mirror of
https://github.com/eliasstepanik/voxel-simulation.git
synced 2026-01-25 20:48:47 +00:00
Compare commits
14 Commits
fb3d60cb2d
...
f5714ff105
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f5714ff105 | ||
|
|
028a966856 | ||
|
|
496c5bf673 | ||
|
|
eecd786ccb | ||
|
|
430a933e8b | ||
|
|
440fd4a717 | ||
|
|
1b4f070015 | ||
|
|
0b07669345 | ||
|
|
6c4b125ea9 | ||
|
|
eb34a16a0a | ||
|
|
b355ac13a9 | ||
|
|
5a7269a446 | ||
|
|
1802595f7e | ||
|
|
0cf98496ed |
@ -21,4 +21,6 @@ smallvec = "1.14.0"
|
||||
once_cell = "1.21.3"
|
||||
rayon = "1.10.0"
|
||||
bincode = "1.3"
|
||||
bevy_app_compute = "0.16"
|
||||
bytemuck = { version = "1.14", features = ["derive"] }
|
||||
|
||||
|
||||
170
client/assets/shaders/greedy_meshing.wgsl
Normal file
170
client/assets/shaders/greedy_meshing.wgsl
Normal file
@ -0,0 +1,170 @@
|
||||
// Generates mesh quads for a voxel chunk using a simple greedy algorithm.
|
||||
// Each invocation processes a slice of the chunk along one axis.
|
||||
// Results are stored in a vertex/index buffer.
|
||||
|
||||
struct Params {
|
||||
origin: vec3<f32>,
|
||||
step: f32,
|
||||
axis: u32,
|
||||
dir: i32,
|
||||
slice: u32,
|
||||
_pad: u32,
|
||||
};
|
||||
|
||||
struct Vertex {
|
||||
pos: vec3<f32>,
|
||||
normal: vec3<f32>,
|
||||
uv: vec2<f32>,
|
||||
};
|
||||
|
||||
@group(0) @binding(0) var<storage, read> voxels: array<u32>;
|
||||
@group(0) @binding(1) var<uniform> params: Params;
|
||||
@group(0) @binding(2) var<storage, read_write> vertices: array<Vertex>;
|
||||
@group(0) @binding(3) var<storage, read_write> indices: array<u32>;
|
||||
@group(0) @binding(4) var<storage, read_write> counts: atomic<u32>;
|
||||
|
||||
const N: u32 = 16u;
|
||||
|
||||
const MASK_LEN: u32 = N * N;
|
||||
|
||||
fn voxel_index(p: vec3<i32>) -> u32 {
|
||||
return u32(p.x) * N * N + u32(p.y) * N + u32(p.z);
|
||||
}
|
||||
|
||||
fn voxel_filled(p: vec3<i32>) -> bool {
|
||||
return p.x >= 0 && p.x < i32(N) && p.y >= 0 && p.y < i32(N) && p.z >= 0 && p.z < i32(N) && voxels[voxel_index(p)] != 0u;
|
||||
}
|
||||
|
||||
@compute @workgroup_size(1)
|
||||
fn main(@builtin(global_invocation_id) id: vec3<u32>) {
|
||||
var mask: array<bool, MASK_LEN>;
|
||||
var visited: array<bool, MASK_LEN>;
|
||||
|
||||
// Iterate over all axes and both face directions.
|
||||
for (var axis: u32 = 0u; axis < 3u; axis = axis + 1u) {
|
||||
for (var dir_idx: u32 = 0u; dir_idx < 2u; dir_idx = dir_idx + 1u) {
|
||||
let dir: i32 = select(-1, 1, dir_idx == 1u);
|
||||
|
||||
for (var slice: u32 = 0u; slice < N; slice = slice + 1u) {
|
||||
// Build mask for this slice.
|
||||
for (var u: u32 = 0u; u < N; u = u + 1u) {
|
||||
for (var v: u32 = 0u; v < N; v = v + 1u) {
|
||||
var cell = vec3<i32>(0, 0, 0);
|
||||
var neighbor = vec3<i32>(0, 0, 0);
|
||||
|
||||
if axis == 0u {
|
||||
cell = vec3<i32>(i32(slice), i32(u), i32(v));
|
||||
neighbor = cell + vec3<i32>(dir, 0, 0);
|
||||
} else if axis == 1u {
|
||||
cell = vec3<i32>(i32(v), i32(slice), i32(u));
|
||||
neighbor = cell + vec3<i32>(0, dir, 0);
|
||||
} else {
|
||||
cell = vec3<i32>(i32(u), i32(v), i32(slice));
|
||||
neighbor = cell + vec3<i32>(0, 0, dir);
|
||||
}
|
||||
|
||||
let i = u * N + v;
|
||||
mask[i] = voxel_filled(cell) && !voxel_filled(neighbor);
|
||||
visited[i] = false;
|
||||
}
|
||||
}
|
||||
|
||||
// Greedy merge.
|
||||
for (var u0: u32 = 0u; u0 < N; u0 = u0 + 1u) {
|
||||
for (var v0: u32 = 0u; v0 < N; v0 = v0 + 1u) {
|
||||
let i0 = u0 * N + v0;
|
||||
if !mask[i0] || visited[i0] {
|
||||
continue;
|
||||
}
|
||||
|
||||
var width: u32 = 1u;
|
||||
loop {
|
||||
if u0 + width >= N || !mask[u0 + width * N + v0] || visited[u0 + width * N + v0] {
|
||||
break;
|
||||
}
|
||||
width = width + 1u;
|
||||
}
|
||||
|
||||
var height: u32 = 1u;
|
||||
outer: loop {
|
||||
if v0 + height >= N {
|
||||
break;
|
||||
}
|
||||
for (var du: u32 = 0u; du < width; du = du + 1u) {
|
||||
let idx = (u0 + du) * N + v0 + height;
|
||||
if !mask[idx] || visited[idx] {
|
||||
break outer;
|
||||
}
|
||||
}
|
||||
height = height + 1u;
|
||||
}
|
||||
|
||||
for (var du: u32 = 0u; du < width; du = du + 1u) {
|
||||
for (var dv: u32 = 0u; dv < height; dv = dv + 1u) {
|
||||
visited[(u0 + du) * N + v0 + dv] = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute base world-space position.
|
||||
var base = params.origin;
|
||||
if axis == 0u {
|
||||
base = base + vec3<f32>(f32(slice) + (dir > 0 ? 1.0 : 0.0), f32(u0), f32(v0)) * params.step;
|
||||
} else if axis == 1u {
|
||||
base = base + vec3<f32>(f32(v0), f32(slice) + (dir > 0 ? 1.0 : 0.0), f32(u0)) * params.step;
|
||||
} else {
|
||||
base = base + vec3<f32>(f32(u0), f32(v0), f32(slice) + (dir > 0 ? 1.0 : 0.0)) * params.step;
|
||||
}
|
||||
|
||||
let size = vec2<f32>(f32(width) * params.step, f32(height) * params.step);
|
||||
|
||||
var normal = vec3<f32>(0.0, 0.0, 0.0);
|
||||
var u_unit = vec3<f32>(0.0, 0.0, 0.0);
|
||||
var v_unit = vec3<f32>(0.0, 0.0, 0.0);
|
||||
|
||||
if axis == 0u {
|
||||
normal = vec3<f32>(f32(dir), 0.0, 0.0);
|
||||
u_unit = vec3<f32>(0.0, 1.0, 0.0);
|
||||
v_unit = vec3<f32>(0.0, 0.0, 1.0);
|
||||
} else if axis == 1u {
|
||||
normal = vec3<f32>(0.0, f32(dir), 0.0);
|
||||
u_unit = vec3<f32>(0.0, 0.0, 1.0);
|
||||
v_unit = vec3<f32>(1.0, 0.0, 0.0);
|
||||
} else {
|
||||
normal = vec3<f32>(0.0, 0.0, f32(dir));
|
||||
u_unit = vec3<f32>(1.0, 0.0, 0.0);
|
||||
v_unit = vec3<f32>(0.0, 1.0, 0.0);
|
||||
}
|
||||
|
||||
let p0 = base;
|
||||
let p1 = base + u_unit * size.x;
|
||||
let p2 = base + u_unit * size.x + v_unit * size.y;
|
||||
let p3 = base + v_unit * size.y;
|
||||
|
||||
let vi = atomicAdd(&counts[0], 4u);
|
||||
vertices[vi] = Vertex(pos: p0, normal: normal, uv: vec2<f32>(0.0, 1.0));
|
||||
vertices[vi + 1u] = Vertex(pos: p1, normal: normal, uv: vec2<f32>(1.0, 1.0));
|
||||
vertices[vi + 2u] = Vertex(pos: p2, normal: normal, uv: vec2<f32>(1.0, 0.0));
|
||||
vertices[vi + 3u] = Vertex(pos: p3, normal: normal, uv: vec2<f32>(0.0, 0.0));
|
||||
|
||||
let ii = atomicAdd(&counts[1], 6u);
|
||||
if dir > 0 {
|
||||
indices[ii] = vi;
|
||||
indices[ii + 1u] = vi + 1u;
|
||||
indices[ii + 2u] = vi + 2u;
|
||||
indices[ii + 3u] = vi + 2u;
|
||||
indices[ii + 4u] = vi + 3u;
|
||||
indices[ii + 5u] = vi;
|
||||
} else {
|
||||
indices[ii] = vi;
|
||||
indices[ii + 1u] = vi + 3u;
|
||||
indices[ii + 2u] = vi + 2u;
|
||||
indices[ii + 3u] = vi + 2u;
|
||||
indices[ii + 4u] = vi + 1u;
|
||||
indices[ii + 5u] = vi;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1,28 +1,42 @@
|
||||
use crate::plugins::environment::systems::voxels::debug::{draw_grid, visualize_octree_system};
|
||||
use crate::plugins::environment::systems::voxels::lod::update_chunk_lods;
|
||||
use crate::plugins::environment::systems::voxels::meshing_gpu::{
|
||||
GpuMeshingWorker, queue_gpu_meshing,
|
||||
};
|
||||
use bevy_app_compute::prelude::{AppComputePlugin, AppComputeWorkerPlugin};
|
||||
use crate::plugins::environment::systems::voxels::queue_systems;
|
||||
use crate::plugins::environment::systems::voxels::queue_systems::{
|
||||
enqueue_visible_chunks, process_chunk_queue,
|
||||
};
|
||||
use crate::plugins::environment::systems::voxels::render_chunks::rebuild_dirty_chunks;
|
||||
use crate::plugins::environment::systems::voxels::atlas::{VoxelTextureAtlas};
|
||||
use crate::plugins::environment::systems::voxels::structure::{
|
||||
ChunkBudget, ChunkCullingCfg, ChunkQueue, MeshBufferPool, PrevCameraChunk, SparseVoxelOctree,
|
||||
SpawnedChunks,
|
||||
};
|
||||
use bevy::app::{App, Plugin, PreStartup, PreUpdate, Startup};
|
||||
use bevy::prelude::*;
|
||||
use crate::plugins::environment::systems::voxels::debug::{draw_grid, visualize_octree_system};
|
||||
use crate::plugins::environment::systems::voxels::queue_systems;
|
||||
use crate::plugins::environment::systems::voxels::queue_systems::{enqueue_visible_chunks, process_chunk_queue};
|
||||
use crate::plugins::environment::systems::voxels::render_chunks::rebuild_dirty_chunks;
|
||||
use crate::plugins::environment::systems::voxels::lod::update_chunk_lods;
|
||||
use crate::plugins::environment::systems::voxels::structure::{ChunkBudget, ChunkCullingCfg, ChunkQueue, SparseVoxelOctree, SpawnedChunks, PrevCameraChunk};
|
||||
|
||||
pub struct EnvironmentPlugin;
|
||||
impl Plugin for EnvironmentPlugin {
|
||||
fn build(&self, app: &mut App) {
|
||||
|
||||
app.add_systems(
|
||||
Startup,
|
||||
(
|
||||
setup_texture_atlas,
|
||||
crate::plugins::environment::systems::camera_system::setup,
|
||||
crate::plugins::environment::systems::environment_system::setup.after(crate::plugins::environment::systems::camera_system::setup),
|
||||
crate::plugins::environment::systems::voxel_system::setup
|
||||
|
||||
crate::plugins::environment::systems::environment_system::setup
|
||||
.after(crate::plugins::environment::systems::camera_system::setup),
|
||||
crate::plugins::environment::systems::voxel_system::setup,
|
||||
),
|
||||
);
|
||||
app.add_plugins(AppComputePlugin);
|
||||
app.add_plugins(AppComputeWorkerPlugin::<GpuMeshingWorker>::default());
|
||||
|
||||
let view_distance_chunks = 100;
|
||||
app.insert_resource(ChunkCullingCfg { view_distance_chunks });
|
||||
app.insert_resource(ChunkCullingCfg {
|
||||
view_distance_chunks,
|
||||
});
|
||||
app.insert_resource(ChunkBudget { per_frame: 20 });
|
||||
app.init_resource::<PrevCameraChunk>();
|
||||
app.add_systems(Update, log_mesh_count);
|
||||
@ -32,6 +46,7 @@ impl Plugin for EnvironmentPlugin {
|
||||
// ------------------------------------------------------------------------
|
||||
.init_resource::<ChunkQueue>()
|
||||
.init_resource::<SpawnedChunks>()
|
||||
.init_resource::<MeshBufferPool>()
|
||||
// ------------------------------------------------------------------------
|
||||
// frame update
|
||||
// ------------------------------------------------------------------------
|
||||
@ -42,8 +57,8 @@ impl Plugin for EnvironmentPlugin {
|
||||
enqueue_visible_chunks,
|
||||
process_chunk_queue.after(enqueue_visible_chunks),
|
||||
update_chunk_lods.after(process_chunk_queue),
|
||||
rebuild_dirty_chunks .after(process_chunk_queue), // 4. (re)mesh dirty chunks
|
||||
|
||||
rebuild_dirty_chunks.after(process_chunk_queue), // 4. (re)mesh dirty chunks
|
||||
queue_gpu_meshing.after(rebuild_dirty_chunks),
|
||||
/* ---------- optional debug drawing ------- */
|
||||
visualize_octree_system
|
||||
.run_if(should_visualize_octree)
|
||||
@ -52,9 +67,8 @@ impl Plugin for EnvironmentPlugin {
|
||||
.run_if(should_draw_grid)
|
||||
.after(visualize_octree_system),
|
||||
)
|
||||
.chain(), // make the whole tuple execute in this exact order
|
||||
.chain(), // make the whole tuple execute in this exact order
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@ -65,11 +79,20 @@ fn log_mesh_count(meshes: Res<Assets<Mesh>>, time: Res<Time>) {
|
||||
}
|
||||
|
||||
fn should_visualize_octree(octree_query: Query<&SparseVoxelOctree>) -> bool {
|
||||
let Ok(octree) = octree_query.get_single() else { return false };
|
||||
let Ok(octree) = octree_query.get_single() else {
|
||||
return false;
|
||||
};
|
||||
octree.show_wireframe
|
||||
}
|
||||
|
||||
fn should_draw_grid(octree_query: Query<&SparseVoxelOctree>) -> bool {
|
||||
let Ok(octree) = octree_query.get_single() else { return false };
|
||||
let Ok(octree) = octree_query.get_single() else {
|
||||
return false;
|
||||
};
|
||||
octree.show_world_grid
|
||||
}
|
||||
}
|
||||
|
||||
fn setup_texture_atlas(mut commands: Commands, mut images: ResMut<Assets<Image>>) {
|
||||
let atlas = VoxelTextureAtlas::generate(&mut images);
|
||||
commands.insert_resource(atlas);
|
||||
}
|
||||
|
||||
@ -1,25 +1,21 @@
|
||||
use std::path::Path;
|
||||
use rayon::prelude::*;
|
||||
use crate::plugins::big_space::big_space_plugin::RootGrid;
|
||||
use crate::plugins::environment::systems::voxels::structure::*;
|
||||
use rayon::prelude::*;
|
||||
use std::path::Path;
|
||||
|
||||
use bevy::prelude::*;
|
||||
use bevy::render::mesh::*;
|
||||
use noise::{NoiseFn, Perlin};
|
||||
use rand::{thread_rng, Rng};
|
||||
use rand::{Rng, thread_rng};
|
||||
|
||||
pub fn setup(
|
||||
mut commands: Commands,
|
||||
root: Res<RootGrid>,
|
||||
) {
|
||||
pub fn setup(mut commands: Commands, root: Res<RootGrid>) {
|
||||
// Octree parameters
|
||||
let unit_size = 1.0_f32;
|
||||
let unit_size = 1.0_f32;
|
||||
let octree_base_size = 64.0 * unit_size;
|
||||
let octree_depth = 10;
|
||||
let octree_depth = 10;
|
||||
|
||||
let path = Path::new("octree.bin");
|
||||
|
||||
|
||||
let mut octree = if path.exists() {
|
||||
match SparseVoxelOctree::load_from_file(path) {
|
||||
Ok(tree) => tree,
|
||||
@ -30,7 +26,6 @@ pub fn setup(
|
||||
}
|
||||
} else {
|
||||
let mut tree = SparseVoxelOctree::new(octree_depth, octree_base_size, false, false, false);
|
||||
let color = Color::srgb(0.2, 0.8, 0.2);
|
||||
// How many random spheres?
|
||||
/*const NUM_SPHERES: usize = 5;
|
||||
let mut rng = threald_rng();
|
||||
@ -44,30 +39,22 @@ pub fn setup(
|
||||
|
||||
let radius = rng.gen_range(20..=150); // voxels
|
||||
|
||||
generate_voxel_sphere_parallel(&mut tree, center, radius, color);
|
||||
generate_voxel_sphere_parallel(&mut tree, center, radius);
|
||||
}*/
|
||||
|
||||
generate_voxel_sphere(&mut tree, 200, color);
|
||||
|
||||
generate_voxel_sphere(&mut tree, 200);
|
||||
tree
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
// Attach octree to the scene graph
|
||||
commands.entity(root.0).with_children(|parent| {
|
||||
parent.spawn((Transform::default(), octree));
|
||||
});
|
||||
}
|
||||
|
||||
pub fn generate_voxel_sphere_parallel(
|
||||
octree: &mut SparseVoxelOctree,
|
||||
center: Vec3,
|
||||
radius: i32,
|
||||
color: Color,
|
||||
) {
|
||||
let step = octree.get_spacing_at_depth(octree.max_depth);
|
||||
let radius_sq = radius * radius;
|
||||
pub fn generate_voxel_sphere_parallel(octree: &mut SparseVoxelOctree, center: Vec3, radius: i32) {
|
||||
let step = octree.get_spacing_at_depth(octree.max_depth);
|
||||
let radius_sq = radius * radius;
|
||||
|
||||
// 1. Collect voxel positions in parallel
|
||||
let voxels: Vec<(Vec3, Voxel)> = (-radius..=radius)
|
||||
@ -75,7 +62,7 @@ pub fn generate_voxel_sphere_parallel(
|
||||
.flat_map_iter(|ix| {
|
||||
let dx2 = ix * ix;
|
||||
(-radius..=radius).flat_map(move |iy| {
|
||||
let dy2 = iy * iy;
|
||||
let dy2 = iy * iy;
|
||||
let r2_xy = dx2 + dy2;
|
||||
|
||||
if r2_xy > radius_sq {
|
||||
@ -83,14 +70,16 @@ pub fn generate_voxel_sphere_parallel(
|
||||
}
|
||||
|
||||
let max_z = ((radius_sq - r2_xy) as f32).sqrt() as i32;
|
||||
(-max_z..=max_z).map(move |iz| {
|
||||
let pos = Vec3::new(
|
||||
center.x + ix as f32 * step,
|
||||
center.y + iy as f32 * step,
|
||||
center.z + iz as f32 * step,
|
||||
);
|
||||
(pos, Voxel { color })
|
||||
}).collect::<Vec<_>>()
|
||||
(-max_z..=max_z)
|
||||
.map(move |iz| {
|
||||
let pos = Vec3::new(
|
||||
center.x + ix as f32 * step,
|
||||
center.y + iy as f32 * step,
|
||||
center.z + iz as f32 * step,
|
||||
);
|
||||
(pos, Voxel::random_sides())
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
@ -101,12 +90,7 @@ pub fn generate_voxel_sphere_parallel(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
fn generate_voxel_sphere(
|
||||
octree: &mut SparseVoxelOctree,
|
||||
planet_radius: i32,
|
||||
voxel_color: Color,
|
||||
) {
|
||||
fn generate_voxel_sphere(octree: &mut SparseVoxelOctree, planet_radius: i32) {
|
||||
// For simplicity, we center the sphere around (0,0,0).
|
||||
// We'll loop over a cubic region [-planet_radius, +planet_radius] in x, y, z
|
||||
let min = -planet_radius;
|
||||
@ -131,9 +115,7 @@ fn generate_voxel_sphere(
|
||||
let position = Vec3::new(wx, wy, wz);
|
||||
|
||||
// Insert the voxel
|
||||
let voxel = Voxel {
|
||||
color: voxel_color,
|
||||
};
|
||||
let voxel = Voxel::random_sides();
|
||||
octree.insert(position, voxel);
|
||||
}
|
||||
}
|
||||
@ -141,13 +123,9 @@ fn generate_voxel_sphere(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Inserts a 16x256x16 "column" of voxels into the octree at (0,0,0) corner.
|
||||
/// If you want it offset or centered differently, just adjust the for-loop ranges or offsets.
|
||||
fn generate_voxel_rect(
|
||||
octree: &mut SparseVoxelOctree,
|
||||
voxel_color: Color,
|
||||
) {
|
||||
fn generate_voxel_rect(octree: &mut SparseVoxelOctree) {
|
||||
// The dimensions of our rectangle: 16 x 256 x 16
|
||||
let size_x = 16;
|
||||
let size_y = 256;
|
||||
@ -172,21 +150,14 @@ fn generate_voxel_rect(
|
||||
let position = Vec3::new(wx, wy, wz);
|
||||
|
||||
// Insert the voxel
|
||||
let voxel = Voxel {
|
||||
color: voxel_color,
|
||||
};
|
||||
let voxel = Voxel::random_sides();
|
||||
octree.insert(position, voxel);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn generate_large_plane(
|
||||
octree: &mut SparseVoxelOctree,
|
||||
width: usize,
|
||||
depth: usize,
|
||||
color: Color,
|
||||
) {
|
||||
fn generate_large_plane(octree: &mut SparseVoxelOctree, width: usize, depth: usize) {
|
||||
// We'll get the voxel spacing (size at the deepest level).
|
||||
let step = octree.get_spacing_at_depth(octree.max_depth);
|
||||
|
||||
@ -207,20 +178,16 @@ fn generate_large_plane(
|
||||
let position = Vec3::new(wx, wy, wz);
|
||||
|
||||
// Insert the voxel
|
||||
let voxel = Voxel {
|
||||
color,
|
||||
};
|
||||
let voxel = Voxel::random_sides();
|
||||
octree.insert(position, voxel);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub fn generate_solid_plane_with_noise(
|
||||
octree: &mut SparseVoxelOctree,
|
||||
width: usize,
|
||||
depth: usize,
|
||||
color: Color,
|
||||
noise: &Perlin,
|
||||
frequency: f32,
|
||||
amplitude: f32,
|
||||
@ -245,13 +212,9 @@ pub fn generate_solid_plane_with_noise(
|
||||
|
||||
// Fill from layer 0 up to max_layer
|
||||
for iy in 0..=max_layer {
|
||||
let position = Vec3::new(
|
||||
x * step,
|
||||
iy as f32 * step,
|
||||
z * step,
|
||||
);
|
||||
let position = Vec3::new(x * step, iy as f32 * step, z * step);
|
||||
|
||||
let voxel = Voxel { color };
|
||||
let voxel = Voxel::random_sides();
|
||||
octree.insert(position, voxel);
|
||||
}
|
||||
}
|
||||
|
||||
71
client/src/plugins/environment/systems/voxels/atlas.rs
Normal file
71
client/src/plugins/environment/systems/voxels/atlas.rs
Normal file
@ -0,0 +1,71 @@
|
||||
use bevy::asset::RenderAssetUsages;
|
||||
use bevy::prelude::*;
|
||||
use bevy::render::render_resource::{Extent3d, TextureDimension, TextureFormat};
|
||||
|
||||
/// Configuration and handle for the voxel texture atlas.
|
||||
#[derive(Resource, Clone)]
|
||||
pub struct VoxelTextureAtlas {
|
||||
pub handle: Handle<Image>,
|
||||
pub columns: usize,
|
||||
pub rows: usize,
|
||||
}
|
||||
|
||||
impl VoxelTextureAtlas {
|
||||
/// Create a simple procedural atlas with solid colors.
|
||||
pub fn generate(images: &mut Assets<Image>) -> Self {
|
||||
let tile_size = 16u32;
|
||||
let columns = 2;
|
||||
let rows = 3;
|
||||
let width = tile_size * columns as u32;
|
||||
let height = tile_size * rows as u32;
|
||||
let mut data = vec![0u8; (width * height * 4) as usize];
|
||||
let colors = [
|
||||
[255, 0, 0, 255], // 0: red
|
||||
[0, 0, 0, 255], // 1: black
|
||||
[0, 255, 0, 255], // 2: green
|
||||
[0, 0, 255, 255], // 3: blue
|
||||
[255, 255, 0, 255], // 4: yellow
|
||||
[255, 0, 255, 255], // 5: magenta
|
||||
];
|
||||
for (i, col) in colors.iter().enumerate() {
|
||||
let cx = (i % columns) as u32 * tile_size;
|
||||
let cy = (i / columns) as u32 * tile_size;
|
||||
for y in 0..tile_size {
|
||||
for x in 0..tile_size {
|
||||
let idx = (((cy + y) * width + (cx + x)) * 4) as usize;
|
||||
data[idx..idx + 4].copy_from_slice(col);
|
||||
}
|
||||
}
|
||||
}
|
||||
let image = Image::new_fill(
|
||||
Extent3d {
|
||||
width,
|
||||
height,
|
||||
depth_or_array_layers: 1,
|
||||
},
|
||||
TextureDimension::D2,
|
||||
&data,
|
||||
TextureFormat::Rgba8UnormSrgb,
|
||||
RenderAssetUsages::default(),
|
||||
);
|
||||
let handle = images.add(image);
|
||||
Self {
|
||||
handle,
|
||||
columns,
|
||||
rows,
|
||||
}
|
||||
}
|
||||
|
||||
/// Compute UV coordinates for the given atlas index.
|
||||
pub fn uv_rect(&self, index: usize) -> [[f32; 2]; 4] {
|
||||
let col = index % self.columns;
|
||||
let row = index / self.columns;
|
||||
let cols = self.columns as f32;
|
||||
let rows = self.rows as f32;
|
||||
let u0 = col as f32 / cols;
|
||||
let v0 = row as f32 / rows;
|
||||
let u1 = (col + 1) as f32 / cols;
|
||||
let v1 = (row + 1) as f32 / rows;
|
||||
[[u0, v1], [u1, v1], [u1, v0], [u0, v0]]
|
||||
}
|
||||
}
|
||||
@ -1,5 +1,5 @@
|
||||
use bevy::prelude::*;
|
||||
use crate::plugins::environment::systems::voxels::structure::*;
|
||||
use bevy::prelude::*;
|
||||
|
||||
/// Visualize each node of the octree as a scaled cuboid, **center-based**.
|
||||
/// `octree_tf.translation` is the world-space center of the root bounding box.
|
||||
@ -13,8 +13,7 @@ pub fn visualize_octree_system(
|
||||
|
||||
// Draw a translucent cuboid for the root
|
||||
gizmos.cuboid(
|
||||
Transform::from_translation(octree_tf.translation)
|
||||
.with_scale(Vec3::splat(octree.size)),
|
||||
Transform::from_translation(octree_tf.translation).with_scale(Vec3::splat(octree.size)),
|
||||
Color::srgba(1.0, 1.0, 0.0, 0.15),
|
||||
);
|
||||
|
||||
@ -85,9 +84,8 @@ fn visualize_recursive_center(
|
||||
|
||||
// Draw a small cuboid at the same center as the parent node.
|
||||
gizmos.cuboid(
|
||||
Transform::from_translation(parent_center)
|
||||
.with_scale(Vec3::splat(leaf_size)),
|
||||
voxel.color,
|
||||
Transform::from_translation(parent_center).with_scale(Vec3::splat(leaf_size)),
|
||||
Color::WHITE,
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -100,7 +98,9 @@ pub fn draw_grid(
|
||||
camera_query: Query<&Transform, With<Camera>>,
|
||||
octree_query: Query<(&SparseVoxelOctree, &Transform)>,
|
||||
) {
|
||||
let Ok(camera_tf) = camera_query.get_single() else { return };
|
||||
let Ok(camera_tf) = camera_query.get_single() else {
|
||||
return;
|
||||
};
|
||||
let camera_pos = camera_tf.translation;
|
||||
|
||||
for (octree, octree_tf) in octree_query.iter() {
|
||||
@ -142,4 +142,4 @@ pub fn draw_grid(
|
||||
gizmos.line(p3, p4, Color::WHITE);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,7 +1,8 @@
|
||||
use crate::plugins::environment::systems::voxels::structure::*;
|
||||
use crate::plugins::environment::systems::voxels::atlas::VoxelTextureAtlas;
|
||||
use bevy::asset::RenderAssetUsages;
|
||||
use bevy::prelude::*;
|
||||
use bevy::render::mesh::{Indices, PrimitiveTopology, VertexAttributeValues, Mesh};
|
||||
use crate::plugins::environment::systems::voxels::structure::*;
|
||||
use bevy::render::mesh::{Indices, Mesh, PrimitiveTopology, VertexAttributeValues};
|
||||
|
||||
/*pub(crate) fn mesh_chunk(
|
||||
buffer: &[[[Option<Voxel>; CHUNK_SIZE as usize]; CHUNK_SIZE as usize]; CHUNK_SIZE as usize],
|
||||
@ -96,7 +97,7 @@ use crate::plugins::environment::systems::voxels::structure::*;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ------ 2nd pass : +Z faces ---------------------------------------------
|
||||
for z in 0..CHUNK_SIZE { // +Z faces (normal +Z)
|
||||
let nz = 1;
|
||||
@ -298,12 +299,13 @@ use crate::plugins::environment::systems::voxels::structure::*;
|
||||
mesh
|
||||
}*/
|
||||
|
||||
|
||||
pub(crate) fn mesh_chunk(
|
||||
buffer: &[[[Option<Voxel>; CHUNK_SIZE as usize]; CHUNK_SIZE as usize]; CHUNK_SIZE as usize],
|
||||
origin: Vec3,
|
||||
step: f32,
|
||||
tree: &SparseVoxelOctree,
|
||||
step: f32,
|
||||
tree: &SparseVoxelOctree,
|
||||
pool: &mut MeshBufferPool,
|
||||
atlas: &VoxelTextureAtlas,
|
||||
) -> Option<Mesh> {
|
||||
// ────────────────────────────────────────────────────────────────────────────
|
||||
// Helpers
|
||||
@ -313,29 +315,35 @@ pub(crate) fn mesh_chunk(
|
||||
const MASK_LEN: usize = N * N;
|
||||
|
||||
// Safe voxel query that falls back to the octree for out‑of‑chunk requests.
|
||||
let filled = |x: i32, y: i32, z: i32| -> bool {
|
||||
let get_voxel = |x: i32, y: i32, z: i32| -> Option<Voxel> {
|
||||
if (0..CHUNK_SIZE).contains(&x)
|
||||
&& (0..CHUNK_SIZE).contains(&y)
|
||||
&& (0..CHUNK_SIZE).contains(&z)
|
||||
{
|
||||
buffer[x as usize][y as usize][z as usize].is_some()
|
||||
buffer[x as usize][y as usize][z as usize]
|
||||
} else {
|
||||
let world = origin + Vec3::new(x as f32 * step, y as f32 * step, z as f32 * step);
|
||||
tree.get_voxel_at_world_coords(world).is_some()
|
||||
tree.get_voxel_at_world_coords(world).copied()
|
||||
}
|
||||
};
|
||||
|
||||
// Push a single quad (4 vertices, 6 indices). `base` is the lower‑left
|
||||
// corner in world space; `u`/`v` are the tangent vectors (length 1); `size`
|
||||
// is expressed in world units along those axes; `n` is the face normal.
|
||||
// Preallocate vertex buffers for better performance
|
||||
// Preallocate vertex buffers for better performance, reusing the pool.
|
||||
pool.clear();
|
||||
let voxel_count = N * N * N;
|
||||
let mut positions = Vec::<[f32; 3]>::with_capacity(voxel_count * 4);
|
||||
let mut normals = Vec::<[f32; 3]>::with_capacity(voxel_count * 4);
|
||||
let mut uvs = Vec::<[f32; 2]>::with_capacity(voxel_count * 4);
|
||||
let mut indices = Vec::<u32>::with_capacity(voxel_count * 6);
|
||||
pool.positions.reserve(voxel_count * 4);
|
||||
pool.normals.reserve(voxel_count * 4);
|
||||
pool.uvs.reserve(voxel_count * 4);
|
||||
pool.indices.reserve(voxel_count * 6);
|
||||
|
||||
let mut push_quad = |base: Vec3, size: Vec2, n: Vec3, u: Vec3, v: Vec3| {
|
||||
let positions = &mut pool.positions;
|
||||
let normals = &mut pool.normals;
|
||||
let uvs = &mut pool.uvs;
|
||||
let indices = &mut pool.indices;
|
||||
|
||||
let mut push_quad = |base: Vec3, size: Vec2, n: Vec3, u: Vec3, v: Vec3, tex_id: usize| {
|
||||
let i0 = positions.len() as u32;
|
||||
positions.extend_from_slice(&[
|
||||
(base).into(),
|
||||
@ -344,7 +352,8 @@ pub(crate) fn mesh_chunk(
|
||||
(base + v * size.y).into(),
|
||||
]);
|
||||
normals.extend_from_slice(&[[n.x, n.y, n.z]; 4]);
|
||||
uvs.extend_from_slice(&[[0.0, 1.0], [1.0, 1.0], [1.0, 0.0], [0.0, 0.0]]);
|
||||
let uv_rect = atlas.uv_rect(tex_id);
|
||||
uvs.extend_from_slice(&uv_rect);
|
||||
|
||||
if n.x + n.y + n.z >= 0.0 {
|
||||
indices.extend_from_slice(&[i0, i0 + 1, i0 + 2, i0 + 2, i0 + 3, i0]);
|
||||
@ -361,7 +370,7 @@ pub(crate) fn mesh_chunk(
|
||||
|
||||
// Axes: 0→X, 1→Y, 2→Z. For each axis we process the negative and positive
|
||||
// faces (dir = −1 / +1).
|
||||
for (axis, dir) in [ (0, -1), (0, 1), (1, -1), (1, 1), (2, -1), (2, 1) ] {
|
||||
for (axis, dir) in [(0, -1), (0, 1), (1, -1), (1, 1), (2, -1), (2, 1)] {
|
||||
// Mapping of (u,v) axes and their unit vectors in world space.
|
||||
let (u_axis, v_axis, face_normal, u_vec, v_vec) = match (axis, dir) {
|
||||
(0, d) => (1, 2, Vec3::new(d as f32, 0.0, 0.0), Vec3::Y, Vec3::Z),
|
||||
@ -376,7 +385,7 @@ pub(crate) fn mesh_chunk(
|
||||
for slice in 0..=N {
|
||||
// Build the face mask for this slice using a fixed-size array to
|
||||
// avoid heap allocations.
|
||||
let mut mask = [false; MASK_LEN];
|
||||
let mut mask = [None::<usize>; MASK_LEN];
|
||||
let mut visited = [false; MASK_LEN];
|
||||
let idx = |u: usize, v: usize| -> usize { u * N + v };
|
||||
|
||||
@ -386,16 +395,27 @@ pub(crate) fn mesh_chunk(
|
||||
let mut cell = [0i32; 3];
|
||||
let mut neighbor = [0i32; 3];
|
||||
|
||||
cell [axis] = slice as i32 + if dir == 1 { -1 } else { 0 };
|
||||
cell[axis] = slice as i32 + if dir == 1 { -1 } else { 0 };
|
||||
neighbor[axis] = cell[axis] + dir;
|
||||
|
||||
cell [u_axis] = u as i32;
|
||||
cell [v_axis] = v as i32;
|
||||
cell[u_axis] = u as i32;
|
||||
cell[v_axis] = v as i32;
|
||||
neighbor[u_axis] = u as i32;
|
||||
neighbor[v_axis] = v as i32;
|
||||
|
||||
if filled(cell[0], cell[1], cell[2]) && !filled(neighbor[0], neighbor[1], neighbor[2]) {
|
||||
mask[idx(u, v)] = true;
|
||||
if let Some(vox) = get_voxel(cell[0], cell[1], cell[2]) {
|
||||
if get_voxel(neighbor[0], neighbor[1], neighbor[2]).is_none() {
|
||||
let face_idx = match (axis, dir) {
|
||||
(0, -1) => 0,
|
||||
(0, 1) => 1,
|
||||
(1, -1) => 2,
|
||||
(1, 1) => 3,
|
||||
(2, -1) => 4,
|
||||
(2, 1) => 5,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
mask[idx(u, v)] = Some(vox.textures[face_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -403,13 +423,17 @@ pub(crate) fn mesh_chunk(
|
||||
// Greedy merge the mask into maximal rectangles.
|
||||
for u0 in 0..N {
|
||||
for v0 in 0..N {
|
||||
if !mask[idx(u0, v0)] || visited[idx(u0, v0)] {
|
||||
if visited[idx(u0, v0)] {
|
||||
continue;
|
||||
}
|
||||
let Some(tex_id) = mask[idx(u0, v0)] else { continue };
|
||||
|
||||
// Determine the rectangle width.
|
||||
let mut width = 1;
|
||||
while u0 + width < N && mask[idx(u0 + width, v0)] && !visited[idx(u0 + width, v0)] {
|
||||
while u0 + width < N
|
||||
&& mask[idx(u0 + width, v0)] == Some(tex_id)
|
||||
&& !visited[idx(u0 + width, v0)]
|
||||
{
|
||||
width += 1;
|
||||
}
|
||||
|
||||
@ -417,7 +441,9 @@ pub(crate) fn mesh_chunk(
|
||||
let mut height = 1;
|
||||
'h: while v0 + height < N {
|
||||
for du in 0..width {
|
||||
if !mask[idx(u0 + du, v0 + height)] || visited[idx(u0 + du, v0 + height)] {
|
||||
if mask[idx(u0 + du, v0 + height)] != Some(tex_id)
|
||||
|| visited[idx(u0 + du, v0 + height)]
|
||||
{
|
||||
break 'h;
|
||||
}
|
||||
}
|
||||
@ -453,7 +479,7 @@ pub(crate) fn mesh_chunk(
|
||||
}
|
||||
|
||||
let size = Vec2::new(width as f32 * step, height as f32 * step);
|
||||
push_quad(base, size, face_normal, u_vec, v_vec);
|
||||
push_quad(base, size, face_normal, u_vec, v_vec, tex_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -466,19 +492,23 @@ pub(crate) fn mesh_chunk(
|
||||
return None;
|
||||
}
|
||||
|
||||
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::default());
|
||||
let mut mesh = Mesh::new(
|
||||
PrimitiveTopology::TriangleList,
|
||||
RenderAssetUsages::default(),
|
||||
);
|
||||
mesh.insert_attribute(
|
||||
Mesh::ATTRIBUTE_POSITION,
|
||||
VertexAttributeValues::Float32x3(positions),
|
||||
VertexAttributeValues::Float32x3(positions.clone()),
|
||||
);
|
||||
mesh.insert_attribute(
|
||||
Mesh::ATTRIBUTE_NORMAL,
|
||||
VertexAttributeValues::Float32x3(normals),
|
||||
VertexAttributeValues::Float32x3(normals.clone()),
|
||||
);
|
||||
mesh.insert_attribute(
|
||||
Mesh::ATTRIBUTE_UV_0,
|
||||
VertexAttributeValues::Float32x2(uvs),
|
||||
VertexAttributeValues::Float32x2(uvs.clone()),
|
||||
);
|
||||
mesh.insert_indices(Indices::U32(indices));
|
||||
mesh.insert_indices(Indices::U32(indices.clone()));
|
||||
pool.clear();
|
||||
Some(mesh)
|
||||
}
|
||||
|
||||
66
client/src/plugins/environment/systems/voxels/meshing_gpu.rs
Normal file
66
client/src/plugins/environment/systems/voxels/meshing_gpu.rs
Normal file
@ -0,0 +1,66 @@
|
||||
use bevy::prelude::*;
|
||||
use bevy_app_compute::prelude::*;
|
||||
|
||||
use super::structure::{MeshBufferPool, SparseVoxelOctree};
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(ShaderType, Copy, Clone, Default)]
|
||||
pub struct Params {
|
||||
pub origin: Vec3,
|
||||
pub step: f32,
|
||||
pub axis: u32,
|
||||
pub dir: i32,
|
||||
pub slice: u32,
|
||||
pub _pad: u32,
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(ShaderType, Copy, Clone, Default)]
|
||||
pub struct VertexGpu {
|
||||
pub pos: Vec3,
|
||||
pub normal: Vec3,
|
||||
pub uv: Vec2,
|
||||
}
|
||||
|
||||
#[derive(TypePath)]
|
||||
struct GreedyMeshingShader;
|
||||
|
||||
impl ComputeShader for GreedyMeshingShader {
|
||||
fn shader() -> ShaderRef {
|
||||
"shaders/greedy_meshing.wgsl".into()
|
||||
}
|
||||
}
|
||||
|
||||
/// GPU worker executing greedy meshing for chunks.
|
||||
#[derive(Resource)]
|
||||
pub struct GpuMeshingWorker;
|
||||
|
||||
impl ComputeWorker for GpuMeshingWorker {
|
||||
fn build(world: &mut World) -> AppComputeWorker<Self> {
|
||||
AppComputeWorkerBuilder::new(world)
|
||||
.add_storage("voxels", &[0u32; 1])
|
||||
.add_uniform("params", &Params::default())
|
||||
.add_storage("vertices", &[VertexGpu::default(); 1])
|
||||
.add_storage("indices", &[0u32; 1])
|
||||
.add_storage("counts", &[0u32; 2])
|
||||
.add_pass::<GreedyMeshingShader>(
|
||||
[1, 1, 1],
|
||||
&["voxels", "params", "vertices", "indices", "counts"],
|
||||
)
|
||||
.one_shot()
|
||||
.build()
|
||||
}
|
||||
}
|
||||
|
||||
/// Placeholder system that will dispatch the compute worker for dirty chunks.
|
||||
pub fn queue_gpu_meshing(
|
||||
mut worker: ResMut<AppComputeWorker<GpuMeshingWorker>>,
|
||||
_octrees: Query<&SparseVoxelOctree>,
|
||||
_pool: ResMut<MeshBufferPool>,
|
||||
) {
|
||||
if !worker.ready() {
|
||||
return;
|
||||
}
|
||||
// TODO: populate the worker buffers with chunk data before dispatching.
|
||||
worker.execute();
|
||||
}
|
||||
@ -4,8 +4,10 @@ pub mod octree;
|
||||
pub mod structure;
|
||||
|
||||
mod chunk;
|
||||
mod meshing;
|
||||
pub mod render_chunks;
|
||||
pub mod culling;
|
||||
pub mod queue_systems;
|
||||
pub mod lod;
|
||||
mod meshing;
|
||||
pub mod meshing_gpu;
|
||||
pub mod queue_systems;
|
||||
pub mod render_chunks;
|
||||
pub mod atlas;
|
||||
|
||||
@ -1,19 +1,27 @@
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::path::Path;
|
||||
use std::io;
|
||||
use bincode;
|
||||
use crate::plugins::environment::systems::voxels::helper::chunk_key_from_world;
|
||||
use crate::plugins::environment::systems::voxels::structure::{
|
||||
AABB, CHUNK_SIZE, ChunkKey, DirtyVoxel, NEIGHBOR_OFFSETS, OctreeNode, Ray, SparseVoxelOctree,
|
||||
Voxel,
|
||||
};
|
||||
use bevy::asset::Assets;
|
||||
use bevy::color::Color;
|
||||
use bevy::math::{DQuat, DVec3};
|
||||
use bevy::prelude::*;
|
||||
use bevy::render::mesh::{Indices, PrimitiveTopology, VertexAttributeValues};
|
||||
use bevy::render::render_asset::RenderAssetUsages;
|
||||
use crate::plugins::environment::systems::voxels::helper::chunk_key_from_world;
|
||||
use crate::plugins::environment::systems::voxels::structure::{DirtyVoxel, OctreeNode, Ray, SparseVoxelOctree, Voxel, AABB, NEIGHBOR_OFFSETS, CHUNK_SIZE, ChunkKey};
|
||||
use bincode;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::io;
|
||||
use std::path::Path;
|
||||
|
||||
impl SparseVoxelOctree {
|
||||
/// Creates a new octree with the specified max depth, size, and wireframe visibility.
|
||||
pub fn new(max_depth: u32, size: f32, show_wireframe: bool, show_world_grid: bool, show_chunks: bool) -> Self {
|
||||
pub fn new(
|
||||
max_depth: u32,
|
||||
size: f32,
|
||||
show_wireframe: bool,
|
||||
show_world_grid: bool,
|
||||
show_chunks: bool,
|
||||
) -> Self {
|
||||
Self {
|
||||
root: OctreeNode::new(),
|
||||
max_depth,
|
||||
@ -38,9 +46,7 @@ impl SparseVoxelOctree {
|
||||
world_center = self.denormalize_voxel_center(aligned);
|
||||
}
|
||||
|
||||
let dirty_voxel = DirtyVoxel{
|
||||
position: aligned,
|
||||
};
|
||||
let dirty_voxel = DirtyVoxel { position: aligned };
|
||||
|
||||
self.dirty.push(dirty_voxel);
|
||||
let key = chunk_key_from_world(self, position);
|
||||
@ -48,7 +54,6 @@ impl SparseVoxelOctree {
|
||||
self.mark_neighbor_chunks_dirty(position);
|
||||
self.occupied_chunks.insert(key);
|
||||
|
||||
|
||||
Self::insert_recursive(&mut self.root, aligned, voxel, self.max_depth);
|
||||
}
|
||||
|
||||
@ -147,9 +152,12 @@ impl SparseVoxelOctree {
|
||||
/// Mark all six neighbor chunks of the given key as dirty if they exist.
|
||||
pub fn mark_neighbors_dirty_from_key(&mut self, key: ChunkKey) {
|
||||
let offsets = [
|
||||
(-1, 0, 0), (1, 0, 0),
|
||||
(0, -1, 0), (0, 1, 0),
|
||||
(0, 0, -1), (0, 0, 1),
|
||||
(-1, 0, 0),
|
||||
(1, 0, 0),
|
||||
(0, -1, 0),
|
||||
(0, 1, 0),
|
||||
(0, 0, -1),
|
||||
(0, 0, 1),
|
||||
];
|
||||
for (dx, dy, dz) in offsets {
|
||||
let neighbor = ChunkKey(key.0 + dx, key.1 + dy, key.2 + dz);
|
||||
@ -159,13 +167,7 @@ impl SparseVoxelOctree {
|
||||
}
|
||||
}
|
||||
|
||||
fn remove_recursive(
|
||||
node: &mut OctreeNode,
|
||||
x: f32,
|
||||
y: f32,
|
||||
z: f32,
|
||||
depth: u32,
|
||||
) -> bool {
|
||||
fn remove_recursive(node: &mut OctreeNode, x: f32, y: f32, z: f32, depth: u32) -> bool {
|
||||
if depth == 0 {
|
||||
if node.voxel.is_some() {
|
||||
node.voxel = None;
|
||||
@ -222,7 +224,6 @@ impl SparseVoxelOctree {
|
||||
false
|
||||
}
|
||||
|
||||
|
||||
fn expand_root(&mut self, _x: f32, _y: f32, _z: f32) {
|
||||
info!("Root expanding ...");
|
||||
// Save the old root and its size.
|
||||
@ -244,7 +245,15 @@ impl SparseVoxelOctree {
|
||||
/// The coordinate system here assumes the node covers [–old_size/2, +old_size/2] in each axis.
|
||||
fn collect_voxels_from_node(node: &OctreeNode, old_size: f32) -> Vec<(Vec3, Voxel, u32)> {
|
||||
let mut voxels = Vec::new();
|
||||
Self::collect_voxels_recursive(node, -old_size / 2.0, -old_size / 2.0, -old_size / 2.0, old_size, 0, &mut voxels);
|
||||
Self::collect_voxels_recursive(
|
||||
node,
|
||||
-old_size / 2.0,
|
||||
-old_size / 2.0,
|
||||
-old_size / 2.0,
|
||||
old_size,
|
||||
0,
|
||||
&mut voxels,
|
||||
);
|
||||
voxels
|
||||
}
|
||||
|
||||
@ -270,14 +279,20 @@ impl SparseVoxelOctree {
|
||||
let offset_x = if (i & 1) != 0 { half } else { 0.0 };
|
||||
let offset_y = if (i & 2) != 0 { half } else { 0.0 };
|
||||
let offset_z = if (i & 4) != 0 { half } else { 0.0 };
|
||||
Self::collect_voxels_recursive(child, x + offset_x, y + offset_y, z + offset_z, half, depth + 1, out);
|
||||
Self::collect_voxels_recursive(
|
||||
child,
|
||||
x + offset_x,
|
||||
y + offset_y,
|
||||
z + offset_z,
|
||||
half,
|
||||
depth + 1,
|
||||
out,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
pub fn traverse(&self) -> Vec<(Vec3, Color, u32)> {
|
||||
pub fn traverse(&self) -> Vec<(Vec3, u32)> {
|
||||
let mut voxels = Vec::new();
|
||||
// Start at the normalized center (0.5, 0.5, 0.5) rather than (0,0,0)
|
||||
Self::traverse_recursive(
|
||||
@ -296,20 +311,20 @@ impl SparseVoxelOctree {
|
||||
local_center: Vec3,
|
||||
size: f32,
|
||||
depth: u32,
|
||||
out: &mut Vec<(Vec3, Color, u32)>,
|
||||
out: &mut Vec<(Vec3, u32)>,
|
||||
octree: &SparseVoxelOctree,
|
||||
) {
|
||||
// If a leaf contains a voxel, record its world-space center
|
||||
if node.is_leaf {
|
||||
if let Some(voxel) = node.voxel {
|
||||
out.push((octree.denormalize_voxel_center(local_center), voxel.color, depth));
|
||||
out.push((octree.denormalize_voxel_center(local_center), depth));
|
||||
}
|
||||
}
|
||||
|
||||
// If the node has children, subdivide the cell into 8 subcells.
|
||||
if let Some(ref children) = node.children {
|
||||
let offset = size / 4.0; // child center offset from parent center
|
||||
let new_size = size / 2.0; // each child cell's size in normalized space
|
||||
let offset = size / 4.0; // child center offset from parent center
|
||||
let new_size = size / 2.0; // each child cell's size in normalized space
|
||||
for (i, child) in children.iter().enumerate() {
|
||||
// Compute each axis' offset: use +offset if the bit is set, else -offset.
|
||||
let dx = if (i & 1) != 0 { offset } else { -offset };
|
||||
@ -322,8 +337,6 @@ impl SparseVoxelOctree {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// Retrieve a voxel from the octree if it exists (x,y,z in [-0.5..+0.5] range).
|
||||
pub fn get_voxel_at(&self, x: f32, y: f32, z: f32) -> Option<&Voxel> {
|
||||
Self::get_voxel_recursive(&self.root, x, y, z)
|
||||
@ -388,7 +401,6 @@ impl SparseVoxelOctree {
|
||||
self.get_voxel_at_world_coords(neighbor_world).is_some()
|
||||
}
|
||||
|
||||
|
||||
/// Performs a raycast against the octree and returns the first intersected voxel.
|
||||
pub fn raycast(&self, ray: &Ray) -> Option<(f32, f32, f32, u32, Vec3)> {
|
||||
// Start from the root node
|
||||
@ -397,12 +409,7 @@ impl SparseVoxelOctree {
|
||||
min: Vec3::new(-half_size as f32, -half_size as f32, -half_size as f32),
|
||||
max: Vec3::new(half_size as f32, half_size as f32, half_size as f32),
|
||||
};
|
||||
self.raycast_recursive(
|
||||
&self.root,
|
||||
ray,
|
||||
&root_bounds,
|
||||
0,
|
||||
)
|
||||
self.raycast_recursive(&self.root, ray, &root_bounds, 0)
|
||||
}
|
||||
|
||||
fn raycast_recursive(
|
||||
@ -435,7 +442,8 @@ impl SparseVoxelOctree {
|
||||
let mut hits = Vec::new();
|
||||
for (i, child) in children.iter().enumerate() {
|
||||
let child_bounds = self.compute_child_bounds(bounds, i);
|
||||
if let Some(hit) = self.raycast_recursive(child, ray, &child_bounds, depth + 1) {
|
||||
if let Some(hit) = self.raycast_recursive(child, ray, &child_bounds, depth + 1)
|
||||
{
|
||||
hits.push(hit);
|
||||
}
|
||||
}
|
||||
@ -445,11 +453,11 @@ impl SparseVoxelOctree {
|
||||
let dist_a = ((a.0 as f32 - ray.origin.x).powi(2)
|
||||
+ (a.1 as f32 - ray.origin.y).powi(2)
|
||||
+ (a.2 as f32 - ray.origin.z).powi(2))
|
||||
.sqrt();
|
||||
.sqrt();
|
||||
let dist_b = ((b.0 as f32 - ray.origin.x).powi(2)
|
||||
+ (b.1 as f32 - ray.origin.y).powi(2)
|
||||
+ (b.2 as f32 - ray.origin.z).powi(2))
|
||||
.sqrt();
|
||||
.sqrt();
|
||||
dist_a.partial_cmp(&dist_b).unwrap()
|
||||
});
|
||||
return Some(hits[0]);
|
||||
@ -462,16 +470,15 @@ impl SparseVoxelOctree {
|
||||
|
||||
/// Save the octree to a file using bincode serialization.
|
||||
pub fn save_to_file<P: AsRef<Path>>(&self, path: P) -> io::Result<()> {
|
||||
let data = bincode::serialize(self)
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
|
||||
let data = bincode::serialize(self).map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
|
||||
std::fs::write(path, data)
|
||||
}
|
||||
|
||||
/// Load an octree from a file and rebuild runtime caches.
|
||||
pub fn load_from_file<P: AsRef<Path>>(path: P) -> io::Result<Self> {
|
||||
let bytes = std::fs::read(path)?;
|
||||
let mut tree: Self = bincode::deserialize(&bytes)
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
|
||||
let mut tree: Self =
|
||||
bincode::deserialize(&bytes).map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
|
||||
tree.rebuild_cache();
|
||||
Ok(tree)
|
||||
}
|
||||
@ -481,7 +488,7 @@ impl SparseVoxelOctree {
|
||||
self.dirty.clear();
|
||||
self.dirty_chunks.clear();
|
||||
self.occupied_chunks.clear();
|
||||
|
||||
|
||||
let voxels = Self::collect_voxels_from_node(&self.root, self.size);
|
||||
for (pos, _voxel, _depth) in voxels {
|
||||
let key = chunk_key_from_world(self, pos);
|
||||
@ -489,4 +496,3 @@ impl SparseVoxelOctree {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -1,27 +1,32 @@
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::format;
|
||||
use crate::plugins::big_space::big_space_plugin::RootGrid;
|
||||
use crate::plugins::environment::systems::voxels::meshing::mesh_chunk;
|
||||
use crate::plugins::environment::systems::voxels::structure::*;
|
||||
use crate::plugins::environment::systems::voxels::atlas::VoxelTextureAtlas;
|
||||
use bevy::pbr::wireframe::Wireframe;
|
||||
use bevy::prelude::*;
|
||||
use bevy::render::mesh::Mesh;
|
||||
use big_space::prelude::GridCell;
|
||||
use itertools::Itertools;
|
||||
use crate::plugins::big_space::big_space_plugin::RootGrid;
|
||||
use crate::plugins::environment::systems::voxels::meshing::mesh_chunk;
|
||||
use crate::plugins::environment::systems::voxels::structure::*;
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::format;
|
||||
|
||||
/// rebuilds meshes only for chunks flagged dirty by the octree
|
||||
pub fn rebuild_dirty_chunks(
|
||||
mut commands : Commands,
|
||||
mut octrees : Query<&mut SparseVoxelOctree>,
|
||||
mut meshes : ResMut<Assets<Mesh>>,
|
||||
mut commands: Commands,
|
||||
mut octrees: Query<&mut SparseVoxelOctree>,
|
||||
mut meshes: ResMut<Assets<Mesh>>,
|
||||
mut materials: ResMut<Assets<StandardMaterial>>,
|
||||
chunk_q : Query<(Entity,
|
||||
&Chunk,
|
||||
&Mesh3d,
|
||||
&MeshMaterial3d<StandardMaterial>,
|
||||
&ChunkLod)>,
|
||||
mut spawned : ResMut<SpawnedChunks>,
|
||||
root : Res<RootGrid>,
|
||||
chunk_q: Query<(
|
||||
Entity,
|
||||
&Chunk,
|
||||
&Mesh3d,
|
||||
&MeshMaterial3d<StandardMaterial>,
|
||||
&ChunkLod,
|
||||
)>,
|
||||
mut spawned: ResMut<SpawnedChunks>,
|
||||
mut pool: ResMut<MeshBufferPool>,
|
||||
root: Res<RootGrid>,
|
||||
atlas: Res<VoxelTextureAtlas>,
|
||||
) {
|
||||
// map ChunkKey → (entity, mesh-handle, material-handle)
|
||||
let existing: HashMap<ChunkKey, (Entity, Handle<Mesh>, Handle<StandardMaterial>, u32)> =
|
||||
@ -39,8 +44,7 @@ pub fn rebuild_dirty_chunks(
|
||||
let mut bufs = Vec::new();
|
||||
for key in tree.dirty_chunks.iter().copied() {
|
||||
let lod = existing.get(&key).map(|v| v.3).unwrap_or(0);
|
||||
let mut buf =
|
||||
[[[None; CHUNK_SIZE as usize]; CHUNK_SIZE as usize]; CHUNK_SIZE as usize];
|
||||
let mut buf = [[[None; CHUNK_SIZE as usize]; CHUNK_SIZE as usize]; CHUNK_SIZE as usize];
|
||||
|
||||
let half = tree.size * 0.5;
|
||||
let step = tree.get_spacing_at_depth(tree.max_depth);
|
||||
@ -85,7 +89,7 @@ pub fn rebuild_dirty_chunks(
|
||||
for (key, buf, origin, step, lod) in bufs {
|
||||
if let Some((ent, mesh_h, _mat_h, _)) = existing.get(&key).cloned() {
|
||||
// update mesh in-place; keeps old asset id
|
||||
match mesh_chunk(&buf, origin, step, &tree) {
|
||||
match mesh_chunk(&buf, origin, step, &tree, &mut pool, &atlas) {
|
||||
Some(new_mesh) => {
|
||||
if let Some(mesh) = meshes.get_mut(&mesh_h) {
|
||||
*mesh = new_mesh;
|
||||
@ -98,10 +102,13 @@ pub fn rebuild_dirty_chunks(
|
||||
spawned.0.remove(&key);
|
||||
}
|
||||
}
|
||||
} else if let Some(mesh) = mesh_chunk(&buf, origin, step, &tree) {
|
||||
} else if let Some(mesh) = mesh_chunk(&buf, origin, step, &tree, &mut pool, &atlas) {
|
||||
// spawn brand-new chunk only if mesh has faces
|
||||
let mesh_h = meshes.add(mesh);
|
||||
let mat_h = materials.add(StandardMaterial::default());
|
||||
let mat_h = materials.add(StandardMaterial {
|
||||
base_color_texture: Some(atlas.handle.clone()),
|
||||
..Default::default()
|
||||
});
|
||||
|
||||
commands.entity(root.0).with_children(|p| {
|
||||
let e = p
|
||||
@ -110,7 +117,11 @@ pub fn rebuild_dirty_chunks(
|
||||
MeshMaterial3d(mat_h.clone()),
|
||||
Transform::default(),
|
||||
GridCell::ZERO,
|
||||
Chunk { key, voxels: Vec::new(), dirty: false },
|
||||
Chunk {
|
||||
key,
|
||||
voxels: Vec::new(),
|
||||
dirty: false,
|
||||
},
|
||||
ChunkLod(lod),
|
||||
/*Wireframe,*/
|
||||
))
|
||||
@ -122,4 +133,4 @@ pub fn rebuild_dirty_chunks(
|
||||
|
||||
tree.clear_dirty_flags();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,30 +1,21 @@
|
||||
use std::collections::{HashMap, HashSet, VecDeque};
|
||||
use bevy::color::Color;
|
||||
use bevy::prelude::*;
|
||||
use serde::{Serialize, Deserialize, Serializer, Deserializer};
|
||||
use rand::Rng;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::collections::{HashMap, HashSet, VecDeque};
|
||||
|
||||
fn serialize_color<S>(color: &Color, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
let [r, g, b, a] = color.to_linear().to_f32_array();
|
||||
[r, g, b, a].serialize(serializer)
|
||||
}
|
||||
|
||||
fn deserialize_color<'de, D>(deserializer: D) -> Result<Color, D::Error>
|
||||
where
|
||||
D: Deserializer<'de>,
|
||||
{
|
||||
let arr: [f32; 4] = Deserialize::deserialize(deserializer)?;
|
||||
Ok(Color::linear_rgba(arr[0], arr[1], arr[2], arr[3]))
|
||||
}
|
||||
|
||||
|
||||
/// Represents a single voxel with a color.
|
||||
#[derive(Debug, Clone, Copy, Component, PartialEq, Default, Serialize, Deserialize)]
|
||||
/// Represents a single voxel with texture indices for each face.
|
||||
#[derive(Debug, Clone, Copy, Component, PartialEq, Serialize, Deserialize)]
|
||||
pub struct Voxel {
|
||||
#[serde(serialize_with = "serialize_color", deserialize_with = "deserialize_color")]
|
||||
pub color: Color,
|
||||
/// Indexes into the texture atlas for the six faces in the order
|
||||
/// left, right, bottom, top, back, front.
|
||||
#[serde(default)]
|
||||
pub textures: [usize; 6],
|
||||
}
|
||||
|
||||
impl Default for Voxel {
|
||||
fn default() -> Self {
|
||||
Self { textures: [0; 6] }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
@ -44,7 +35,6 @@ pub struct OctreeNode {
|
||||
/// Represents the root of the sparse voxel octree.
|
||||
#[derive(Debug, Component, Serialize, Deserialize, Clone)]
|
||||
pub struct SparseVoxelOctree {
|
||||
|
||||
pub root: OctreeNode,
|
||||
pub max_depth: u32,
|
||||
pub size: f32,
|
||||
@ -76,14 +66,26 @@ impl OctreeNode {
|
||||
|
||||
impl Voxel {
|
||||
/// Creates a new empty octree node.
|
||||
pub fn new(color: Color) -> Self {
|
||||
Self {
|
||||
color,
|
||||
pub fn new(textures: [usize; 6]) -> Self {
|
||||
Self { textures }
|
||||
}
|
||||
|
||||
/// Generate a voxel with a red top, black bottom and random colors on
|
||||
/// all remaining faces. Assumes the atlas uses index 0 for red, index 1
|
||||
/// for black and indices >=2 for random colors.
|
||||
pub fn random_sides() -> Self {
|
||||
let mut rng = rand::thread_rng();
|
||||
let mut textures = [0usize; 6];
|
||||
// Face order: left, right, bottom, top, back, front
|
||||
textures[3] = 0; // top is red
|
||||
textures[2] = 1; // bottom is black
|
||||
for &i in &[0usize, 1usize, 4usize, 5usize] {
|
||||
textures[i] = rng.gen_range(2..6);
|
||||
}
|
||||
Self { textures }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub const NEIGHBOR_OFFSETS: [(f32, f32, f32); 6] = [
|
||||
(-1.0, 0.0, 0.0), // Left
|
||||
(1.0, 0.0, 0.0), // Right
|
||||
@ -93,7 +95,6 @@ pub const NEIGHBOR_OFFSETS: [(f32, f32, f32); 6] = [
|
||||
(0.0, 0.0, 1.0), // Front
|
||||
];
|
||||
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Ray {
|
||||
pub origin: Vec3,
|
||||
@ -106,25 +107,22 @@ pub struct AABB {
|
||||
pub max: Vec3,
|
||||
}
|
||||
|
||||
pub const CHUNK_SIZE: i32 = 16; // 16×16×16 voxels
|
||||
pub const CHUNK_POW : u32 = 4;
|
||||
pub const CHUNK_SIZE: i32 = 16; // 16×16×16 voxels
|
||||
pub const CHUNK_POW: u32 = 4;
|
||||
|
||||
#[derive(Component)]
|
||||
pub struct Chunk {
|
||||
pub key: ChunkKey,
|
||||
pub voxels: Vec<(IVec3, Voxel)>, // local coords 0‥15
|
||||
pub voxels: Vec<(IVec3, Voxel)>, // local coords 0‥15
|
||||
pub dirty: bool,
|
||||
|
||||
}
|
||||
|
||||
#[derive(Component, Debug, Clone, Copy)]
|
||||
pub struct ChunkLod(pub u32);
|
||||
|
||||
|
||||
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, Serialize, Deserialize)]
|
||||
pub struct ChunkKey(pub i32, pub i32, pub i32);
|
||||
|
||||
|
||||
/// maximum amount of *new* chunk meshes we are willing to create each frame
|
||||
#[derive(Resource)]
|
||||
pub struct ChunkBudget {
|
||||
@ -132,7 +130,7 @@ pub struct ChunkBudget {
|
||||
}
|
||||
impl Default for ChunkBudget {
|
||||
fn default() -> Self {
|
||||
Self { per_frame: 4 } // tweak to taste
|
||||
Self { per_frame: 4 } // tweak to taste
|
||||
}
|
||||
}
|
||||
|
||||
@ -140,7 +138,7 @@ impl Default for ChunkBudget {
|
||||
#[derive(Resource, Default)]
|
||||
pub struct ChunkQueue {
|
||||
pub keys: VecDeque<ChunkKey>,
|
||||
pub set: HashSet<ChunkKey>,
|
||||
pub set: HashSet<ChunkKey>,
|
||||
}
|
||||
|
||||
/// map “which chunk key already has an entity in the world?”
|
||||
@ -149,8 +147,16 @@ pub struct SpawnedChunks(pub HashMap<ChunkKey, Entity>);
|
||||
|
||||
/// how big the cube around the player is, measured in chunks
|
||||
#[derive(Resource)]
|
||||
pub struct ChunkCullingCfg { pub view_distance_chunks: i32 }
|
||||
impl Default for ChunkCullingCfg { fn default() -> Self { Self { view_distance_chunks: 6 } } }
|
||||
pub struct ChunkCullingCfg {
|
||||
pub view_distance_chunks: i32,
|
||||
}
|
||||
impl Default for ChunkCullingCfg {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
view_distance_chunks: 6,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Resource, Default)]
|
||||
pub struct PrevCameraChunk(pub Option<ChunkKey>);
|
||||
@ -172,3 +178,23 @@ impl ChunkOffsets {
|
||||
Self(offsets)
|
||||
}
|
||||
}
|
||||
|
||||
/// Pool reused when constructing chunk meshes. Reusing the backing
|
||||
/// storage avoids frequent allocations when rebuilding many chunks.
|
||||
#[derive(Resource, Default)]
|
||||
pub struct MeshBufferPool {
|
||||
pub positions: Vec<[f32; 3]>,
|
||||
pub normals: Vec<[f32; 3]>,
|
||||
pub uvs: Vec<[f32; 2]>,
|
||||
pub indices: Vec<u32>,
|
||||
}
|
||||
|
||||
impl MeshBufferPool {
|
||||
/// Clears all buffers while keeping the allocated capacity.
|
||||
pub fn clear(&mut self) {
|
||||
self.positions.clear();
|
||||
self.normals.clear();
|
||||
self.uvs.clear();
|
||||
self.indices.clear();
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,12 +1,11 @@
|
||||
use std::path::Path;
|
||||
use bevy::prelude::*;
|
||||
use crate::plugins::environment::systems::camera_system::CameraController;
|
||||
use crate::plugins::environment::systems::voxels::octree;
|
||||
use crate::plugins::environment::systems::voxels::structure::*;
|
||||
use bevy::prelude::*;
|
||||
use std::path::Path;
|
||||
|
||||
///TODO
|
||||
pub fn voxel_system(
|
||||
|
||||
keyboard_input: Res<ButtonInput<KeyCode>>,
|
||||
mouse_button_input: Res<ButtonInput<MouseButton>>,
|
||||
mut octree_query: Query<&mut SparseVoxelOctree>,
|
||||
@ -14,29 +13,33 @@ pub fn voxel_system(
|
||||
mut query: Query<(&mut Transform, &mut CameraController)>,
|
||||
mut windows: Query<&mut Window>,
|
||||
) {
|
||||
let Ok(mut window) = windows.get_single_mut() else { return };
|
||||
let Ok((mut transform, _)) = query.get_single_mut() else { return };
|
||||
let Ok(mut window) = windows.get_single_mut() else {
|
||||
return;
|
||||
};
|
||||
let Ok((mut transform, _)) = query.get_single_mut() else {
|
||||
return;
|
||||
};
|
||||
|
||||
// =======================
|
||||
// 5) Octree Keys
|
||||
// =======================
|
||||
if keyboard_input.just_pressed(KeyCode::F2){
|
||||
if keyboard_input.just_pressed(KeyCode::F2) {
|
||||
for mut octree in octree_query.iter_mut() {
|
||||
octree.show_wireframe = !octree.show_wireframe;
|
||||
}
|
||||
}
|
||||
if keyboard_input.just_pressed(KeyCode::F3){
|
||||
if keyboard_input.just_pressed(KeyCode::F3) {
|
||||
for mut octree in octree_query.iter_mut() {
|
||||
octree.show_world_grid = !octree.show_world_grid;
|
||||
}
|
||||
}
|
||||
|
||||
if keyboard_input.just_pressed(KeyCode::KeyQ) && window.cursor_options.visible == false{
|
||||
if keyboard_input.just_pressed(KeyCode::KeyQ) && window.cursor_options.visible == false {
|
||||
for mut octree in octree_query.iter_mut() {
|
||||
octree.insert(transform.translation, Voxel::new(Color::srgb(1.0, 0.0, 0.0)));
|
||||
octree.insert(transform.translation, Voxel::random_sides());
|
||||
}
|
||||
}
|
||||
if keyboard_input.just_pressed(KeyCode::F4){
|
||||
if keyboard_input.just_pressed(KeyCode::F4) {
|
||||
let path = Path::new("octree.bin");
|
||||
for octree in octree_query.iter() {
|
||||
if let Err(e) = octree.save_to_file(path) {
|
||||
@ -44,7 +47,7 @@ pub fn voxel_system(
|
||||
}
|
||||
}
|
||||
}
|
||||
/* if keyboard_input.just_pressed(KeyCode::F5){
|
||||
/* if keyboard_input.just_pressed(KeyCode::F5){
|
||||
let path = Path::new("octree.bin");
|
||||
if path.exists() {
|
||||
let path = Path::new("octree.bin");
|
||||
@ -57,17 +60,18 @@ pub fn voxel_system(
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}*/
|
||||
|
||||
|
||||
// =======================
|
||||
// 6) Building
|
||||
// =======================
|
||||
|
||||
if (mouse_button_input.just_pressed(MouseButton::Left) || mouse_button_input.just_pressed(MouseButton::Right)) && !window.cursor_options.visible {
|
||||
|
||||
if (mouse_button_input.just_pressed(MouseButton::Left)
|
||||
|| mouse_button_input.just_pressed(MouseButton::Right))
|
||||
&& !window.cursor_options.visible
|
||||
{
|
||||
// Get the mouse position in normalized device coordinates (-1 to 1)
|
||||
if let Some(_) = window.cursor_position() {
|
||||
// Set the ray direction to the camera's forward vector
|
||||
@ -79,44 +83,33 @@ pub fn voxel_system(
|
||||
direction: ray_direction,
|
||||
};
|
||||
|
||||
|
||||
|
||||
for mut octree in octree_query.iter_mut() {
|
||||
if let Some((hit_x, hit_y, hit_z, depth,normal)) = octree.raycast(&ray) {
|
||||
|
||||
|
||||
if let Some((hit_x, hit_y, hit_z, depth, normal)) = octree.raycast(&ray) {
|
||||
if mouse_button_input.just_pressed(MouseButton::Right) {
|
||||
|
||||
let voxel_size = octree.get_spacing_at_depth(depth);
|
||||
let hit_position = Vec3::new(hit_x as f32, hit_y as f32, hit_z as f32);
|
||||
let epsilon = voxel_size * 0.1; // Adjust this value as needed (e.g., 0.1 times the voxel size)
|
||||
|
||||
// Offset position by epsilon in the direction of the normal
|
||||
let offset_position = hit_position - (normal * Vec3::new(epsilon as f32, epsilon as f32, epsilon as f32));
|
||||
let offset_position = hit_position
|
||||
- (normal * Vec3::new(epsilon as f32, epsilon as f32, epsilon as f32));
|
||||
|
||||
// Remove the voxel
|
||||
octree.remove(offset_position);
|
||||
|
||||
|
||||
}
|
||||
else if mouse_button_input.just_pressed(MouseButton::Left) {
|
||||
|
||||
} else if mouse_button_input.just_pressed(MouseButton::Left) {
|
||||
let voxel_size = octree.get_spacing_at_depth(depth);
|
||||
let hit_position = Vec3::new(hit_x as f32, hit_y as f32, hit_z as f32);
|
||||
let epsilon = voxel_size * 0.1; // Adjust this value as needed (e.g., 0.1 times the voxel size)
|
||||
|
||||
// Offset position by epsilon in the direction of the normal
|
||||
let offset_position = hit_position + (normal * Vec3::new(epsilon as f32, epsilon as f32, epsilon as f32));
|
||||
let offset_position = hit_position
|
||||
+ (normal * Vec3::new(epsilon as f32, epsilon as f32, epsilon as f32));
|
||||
|
||||
// Insert the new voxel
|
||||
octree.insert(
|
||||
offset_position,
|
||||
Voxel::new(Color::srgb(1.0, 0.0, 0.0)),
|
||||
);
|
||||
octree.insert(offset_position, Voxel::random_sides());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user