Merge pull request #16 from eliasstepanik/codex/verify-chunk-mesh-visibility-logic

Codex/verify chunk mesh visibility logic
This commit is contained in:
Elias Stepanik 2025-06-09 18:56:00 +02:00 committed by GitHub
commit cde37cb69b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
77 changed files with 2697 additions and 999 deletions

View File

@ -1,7 +1,7 @@
<component name="ProjectRunConfigurationManager">
<configuration default="false" name="PublishServer Win" type="ShConfigurationType">
<option name="SCRIPT_TEXT" value="" />
<option name="INDEPENDENT_SCRIPT_PATH" value="true" />
<option name="INDEPENDENT_SCRIPT_PATH" value="false" />
<option name="SCRIPT_PATH" value="$PROJECT_DIR$/publish_server.bat" />
<option name="SCRIPT_OPTIONS" value="" />
<option name="INDEPENDENT_SCRIPT_WORKING_DIRECTORY" value="true" />

View File

@ -1,7 +1,7 @@
<component name="ProjectRunConfigurationManager">
<configuration default="false" name="Run horror-game" type="CargoCommandRunConfiguration" factoryName="Cargo Command" singleton="false">
<option name="buildProfileId" value="dev" />
<option name="command" value="run --package horror-game --bin horror-game" />
<option name="buildProfileId" value="release" />
<option name="command" value="run --package horror-game --bin horror-game --features bevy/trace_tracy_memory" />
<option name="workingDirectory" value="file://$PROJECT_DIR$/client" />
<envs />
<option name="emulateTerminal" value="true" />

View File

@ -1,3 +1,3 @@
[workspace]
resolver = "2"
members = ["client", "server"]
members = ["client"]

View File

@ -10,17 +10,13 @@ build = "build.rs"
[dependencies]
bevy = { version = "0.15.1", features = ["jpeg", "trace_tracy", "trace_tracy_memory"] }
bevy_egui = "0.33.0"
bevy_asset = "0.15.0"
bevy_reflect = "0.15.0"
bevy_render = "0.15.0"
bevy_window = "0.15.0"
egui_tiles = "0.12.0"
spacetimedb-sdk = "1.0"
hex = "0.4"
random_word = { version = "0.5.0", features = ["en"] }
rand = "0.8.5"
serde = { version = "1.0", features = ["derive"] }
toml = "0.8"
big_space = "0.9.1"
noise = "0.9.0"
itertools = "0.13.0"
bitvec = "1.0.1"
smallvec = "1.14.0"
once_cell = "1.21.3"
rayon = "1.10.0"

View File

@ -0,0 +1,3 @@
#https://github.com/KhronosGroup/KTX-Software/releases
toktx --t2 --cubemap --target_type RGBA --zcmp 18 --genmipmap sky.ktx2 right.jpg left.jpg top.jpg bottom.jpg front.jpg back.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 723 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 274 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 462 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 588 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 525 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 338 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.9 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.2 MiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 659 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 740 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 683 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 672 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 711 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 568 KiB

View File

@ -5,6 +5,6 @@ fn main() {
let out_dir = std::env::var("OUT_DIR").unwrap();
let target_dir = Path::new(&out_dir).ancestors().nth(3).unwrap(); // gets target/debug or release
fs::copy("config.toml", target_dir.join("config.toml"))
.expect("Failed to copy config.toml to target directory");
fs::copy("Config.toml", target_dir.join("Config.toml"))
.expect("Failed to copy Config.toml to target directory");
}

View File

@ -1,3 +1,4 @@
use bevy::pbr::wireframe::WireframePlugin;
use crate::helper::debug_gizmos::debug_gizmos;
use bevy::prelude::*;
pub struct AppPlugin;
@ -5,9 +6,11 @@ pub struct AppPlugin;
impl Plugin for AppPlugin {
fn build(&self, app: &mut App) {
app.add_plugins(crate::plugins::ui::ui_plugin::UiPlugin);
app.add_plugins(crate::plugins::big_space::big_space_plugin::BigSpaceIntegrationPlugin);
app.add_plugins(crate::plugins::environment::environment_plugin::EnvironmentPlugin);
//app.add_plugins(crate::plugins::network::network_plugin::NetworkPlugin);
app.add_plugins(crate::plugins::input::input_plugin::InputPlugin);
app.add_plugins(WireframePlugin);
app.add_systems(Update, (debug_gizmos));
app.register_type::<Option<Handle<Image>>>();

View File

@ -1,3 +1,2 @@
pub mod debug_gizmos;
pub mod vector_helper;
pub mod math;

View File

@ -1,30 +0,0 @@
use bevy::math::Vec3;
use bevy::prelude::{Quat, Transform};
use rand::Rng;
use crate::helper::math::RoundTo;
use crate::module_bindings::DbTransform;
pub(crate) fn random_vec3(min: f32, max: f32) -> Vec3 {
let mut rng = rand::thread_rng();
Vec3::new(
rng.gen_range(min..max),
rng.gen_range(min..max),
rng.gen_range(min..max),
)
}
impl From<DbTransform> for Transform {
fn from(db: DbTransform) -> Self {
Transform {
translation: Vec3::new(db.position.x, db.position.y, db.position.z),
rotation: //Quat::from_xyzw(0.0, 0.0, 0.0, 0.0),
Quat::from_xyzw(
db.rotation.x.round_to(3),
db.rotation.y.round_to(3),
db.rotation.z.round_to(3),
db.rotation.w.round_to(3),
),
scale: Vec3::new(db.scale.x.round_to(3), db.scale.y.round_to(3), db.scale.z.round_to(3)),
}
}
}

View File

@ -1,21 +1,22 @@
mod app;
mod helper;
mod plugins;
mod module_bindings;
mod config;
use std::fs;
use crate::app::AppPlugin;
use bevy::gizmos::{AppGizmoBuilder, GizmoPlugin};
use bevy::log::info;
use bevy::prelude::{default, App, GizmoConfigGroup, PluginGroup, Reflect, Res, Resource};
use bevy::prelude::*;
use bevy::render::settings::{Backends, RenderCreation, WgpuSettings};
use bevy::render::RenderPlugin;
use bevy::DefaultPlugins;
use bevy_egui::EguiPlugin;
use bevy_window::{PresentMode, Window, WindowPlugin};
use bevy::input::gamepad::AxisSettingsError::DeadZoneUpperBoundGreaterThanLiveZoneUpperBound;
use bevy::window::PresentMode;
use big_space::plugin::BigSpacePlugin;
use toml;
use crate::config::Config;
use crate::plugins::big_space::big_space_plugin::BigSpaceIntegrationPlugin;
const TITLE: &str = "horror-game";
const RESOLUTION: (f32, f32) = (1920f32, 1080f32);
@ -40,7 +41,7 @@ fn main() {
register_platform_plugins(&mut app);
app.add_plugins(AppPlugin);
app.add_plugins(EguiPlugin);
@ -76,7 +77,7 @@ fn register_platform_plugins(app: &mut App) {
..default()
}),
..default()
}),
}).build().disable::<TransformPlugin>(),
);
}

View File

@ -0,0 +1,77 @@
use bevy::math::DVec3;
use bevy::prelude::*;
use big_space::prelude::*;
/// Plugin enabling high precision coordinates using `big_space`.
///
/// This sets up [`BigSpacePlugin`] so entities can be placed far from the origin
/// without losing precision.
// ── plugin that creates the grid ──────────────────────────────────────────────
pub struct BigSpaceIntegrationPlugin;
#[derive(Resource)]
pub struct RootGrid(pub Entity);
impl Plugin for BigSpaceIntegrationPlugin {
fn build(&self, app: &mut App) {
app.add_plugins(BigSpacePlugin::<i64>::default());
app.add_systems(PreStartup, (spawn_root, cache_root.after(spawn_root)));
app.add_systems(PostStartup, (fix_invalid_children));
app.add_systems(PostUpdate,(fix_invalid_children));
}
}
// 1) build the Big-Space root
fn spawn_root(mut commands: Commands) {
commands.spawn_big_space_default::<i64>(|_| {});
}
// 2) cache the root entity for later use
fn cache_root(
mut commands: Commands,
roots: Query<Entity, (With<BigSpace>, Without<Parent>)>, // top-level grid
) {
if let Ok(entity) = roots.get_single() {
commands.entity(entity).insert(Visibility::Visible);
commands.insert_resource(RootGrid(entity));
}
}
fn fix_invalid_children(
mut commands: Commands,
bad: Query<Entity, (With<FloatingOrigin>, Without<GridCell<i64>>, With<Parent>)>,
) {
for e in &bad {
commands.entity(e).insert(GridCell::<i64>::ZERO);
}
}
pub fn move_by(
mut q: Query<&mut Transform>,
delta: Vec3, // metres inside the current cell
) {
for mut t in &mut q {
t.translation += delta; // small numbers only
}
}
pub fn teleport_to<P: GridPrecision>(
e: Entity,
target: DVec3,
grids: Grids<'_, '_, P>,
mut q: Query<(&Parent, &mut GridCell<P>, &mut Transform)>,
) {
let (parent, mut cell, mut tf) = q.get_mut(e).unwrap();
let grid = grids.parent_grid(parent.get()).unwrap();
let (new_cell, local) = grid.translation_to_grid(target);
*cell = new_cell;
tf.translation = local;
}

View File

@ -0,0 +1,2 @@
pub mod big_space_plugin;

View File

@ -1,13 +1,79 @@
use bevy::app::{App, Plugin, PreStartup, PreUpdate, Startup};
use bevy::prelude::*;
use crate::plugins::environment::systems::voxels::culling::{despawn_distant_chunks};
use crate::plugins::environment::systems::voxels::debug::{draw_grid, visualize_octree_system};
use crate::plugins::environment::systems::voxels::queue_systems;
use crate::plugins::environment::systems::voxels::queue_systems::{enqueue_visible_chunks, process_chunk_queue};
use crate::plugins::environment::systems::voxels::render_chunks::rebuild_dirty_chunks;
use crate::plugins::environment::systems::voxels::lod::update_chunk_lods;
use crate::plugins::environment::systems::voxels::structure::{ChunkBudget, ChunkCullingCfg, ChunkQueue, SparseVoxelOctree, SpawnedChunks, PrevCameraChunk};
pub struct EnvironmentPlugin;
impl Plugin for EnvironmentPlugin {
fn build(&self, app: &mut App) {
app.add_systems(
Startup,
(crate::plugins::environment::systems::environment_system::setup, crate::plugins::environment::systems::camera_system::setup ),
(
crate::plugins::environment::systems::camera_system::setup,
crate::plugins::environment::systems::environment_system::setup.after(crate::plugins::environment::systems::camera_system::setup),
crate::plugins::environment::systems::voxel_system::setup
),
);
let view_distance_chunks = 100;
app.insert_resource(ChunkCullingCfg { view_distance_chunks });
app.insert_resource(ChunkBudget { per_frame: 20 });
app.init_resource::<PrevCameraChunk>();
app.add_systems(Update, log_mesh_count);
app
// ------------------------------------------------------------------------
// resources
// ------------------------------------------------------------------------
.init_resource::<ChunkQueue>()
.init_resource::<SpawnedChunks>()
// ------------------------------------------------------------------------
// frame update
// ------------------------------------------------------------------------
.add_systems(
Update,
(
/* ---------- culling & streaming ---------- */
despawn_distant_chunks, // 1. remove too-far chunks
enqueue_visible_chunks.after(despawn_distant_chunks), // 2. find new visible ones
process_chunk_queue .after(enqueue_visible_chunks), // 3. spawn ≤ budget per frame
update_chunk_lods.after(process_chunk_queue),
rebuild_dirty_chunks .after(process_chunk_queue), // 4. (re)mesh dirty chunks
/* ---------- optional debug drawing ------- */
visualize_octree_system
.run_if(should_visualize_octree)
.after(rebuild_dirty_chunks),
draw_grid
.run_if(should_draw_grid)
.after(visualize_octree_system),
)
.chain(), // make the whole tuple execute in this exact order
);
}
}
fn log_mesh_count(meshes: Res<Assets<Mesh>>, time: Res<Time>) {
if time.delta_secs_f64() as i32 % 5 == 0 {
info!("meshes: {}", meshes.len());
}
}
fn should_visualize_octree(octree_query: Query<&SparseVoxelOctree>,) -> bool {
octree_query.single().show_wireframe
}
fn should_draw_grid(octree_query: Query<&SparseVoxelOctree>,) -> bool {
octree_query.single().show_world_grid
}
fn should_visualize_chunks(octree_query: Query<&SparseVoxelOctree>,) -> bool {
octree_query.single().show_chunks
}

View File

@ -1,13 +1,11 @@
use bevy::core_pipeline::Skybox;
use bevy::input::mouse::{MouseMotion, MouseWheel};
use bevy::math::Vec3;
use bevy::prelude::*;
use bevy_render::camera::{Exposure, PhysicalCameraParameters, Projection};
use bevy_window::CursorGrabMode;
use bevy::render::camera::{Exposure, PhysicalCameraParameters};
use big_space::prelude::{BigSpaceCommands, FloatingOrigin};
use rand::Rng;
use random_word::Lang;
use crate::module_bindings::{set_name, set_position, spawn_entity, DbTransform, DbVector3, DbVector4};
use crate::plugins::network::systems::database::DbConnectionResource;
use crate::plugins::big_space::big_space_plugin::RootGrid;
#[derive(Component)]
pub struct CameraController {
@ -27,12 +25,20 @@ impl Default for CameraController {
}
}
}
pub fn setup(mut commands: Commands,) {
pub fn setup(mut commands: Commands,
root: Res<RootGrid>,
asset_server: Res<AssetServer>) {
commands.spawn((
Transform::from_xyz(0.0, 0.0, 10.0), // initial f32
let cubemap_handle = asset_server.load("textures/skybox_space_1024/sky.ktx2");
commands.insert_resource(PendingSkybox { handle: cubemap_handle.clone() });
commands.entity(root.0).with_children(|parent| {
parent.spawn((
Name::new("Camera"),
Transform::from_xyz(0.0, 0.0, 10.0), // initial position
GlobalTransform::default(),
Camera3d::default(),
Projection::from(PerspectiveProjection {
@ -46,7 +52,21 @@ pub fn setup(mut commands: Commands,) {
sensitivity_iso: 100.0,
sensor_height: 0.01866,
}),
FloatingOrigin,
Skybox {
image: cubemap_handle.clone(),
brightness: 1000.0,
..default()
},
));
});
}
#[derive(Resource)]
struct PendingSkybox {
handle: Handle<Image>,
}

View File

@ -1,29 +1,74 @@
use bevy::prelude::*;
use big_space::prelude::{BigSpace, BigSpaceCommands, GridCell, GridCommands};
use crate::plugins::big_space::big_space_plugin::RootGrid;
/// Earth and a FIFA-size football (diameters, metres)
const EARTH_DIAM: f32 = 12_742_000.0; // 12 742 km
const BALL_DIAM: f32 = 0.22; // 22 cm
pub(crate) fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
root: Res<RootGrid>,
) {
// one unit-diameter sphere mesh, reused for every instance
let sphere_mesh = meshes.add(Sphere::new(0.5).mesh().ico(32).unwrap());
let mat = materials.add(StandardMaterial {
base_color: Color::srgb(0.6, 0.7, 0.8),
perceptual_roughness: 0.7,
..default()
});
// 2) directional light
commands.spawn(DirectionalLightBundle {
// light (unchanged)
commands.entity(root.0).with_children(|p| {
p.spawn(DirectionalLightBundle {
transform: Transform::from_rotation(Quat::from_euler(
EulerRot::XYZ,
-std::f32::consts::FRAC_PI_4,
std::f32::consts::FRAC_PI_4,
0.0,
0.0,
)),
directional_light: DirectionalLight {
shadows_enabled: true,
..Default::default()
..default()
},
..Default::default()
..default()
});
});
/*// ---------- spawn spheres from football-size up to Earth-size ----------
const N: usize = 10; // how many spheres
let log_min = BALL_DIAM.log10();
let log_max = EARTH_DIAM.log10();
let mut offset = 0.0_f32; // keep objects apart
commands.entity(root.0).with_children(|parent| {
for i in 0..N {
// log-spaced diameters
let t = i as f32 / (N as f32 - 1.0);
let diam = 10f32.powf(log_min + t * (log_max - log_min));
let radius = diam * 0.5;
let scale_v3 = Vec3::splat(radius); // unit sphere → real size
// place the sphere so they dont overlap
offset += radius; // move by previous radius
let pos = Vec3::new(offset, radius, 0.0); // sit on X axis, resting on Y=0
offset += radius + radius * 0.05; // add gap (5 %)
parent.spawn((
// spatial requirements for big_space
GridCell::<i64>::ZERO,
Transform::from_scale(scale_v3).with_translation(pos),
GlobalTransform::default(),
// rendering
Mesh3d(sphere_mesh.clone()),
MeshMaterial3d(mat.clone()),
Name::new(format!("Sphere_{i}")),
));
}
});*/
}

View File

@ -1,2 +1,5 @@
pub mod environment_system;
pub mod camera_system;
pub mod planet_system;
pub mod voxels;
pub mod voxel_system;

View File

@ -0,0 +1,116 @@
use bevy::asset::RenderAssetUsages;
use bevy::pbr::wireframe::{Wireframe, WireframeColor};
use bevy::prelude::*;
use bevy::render::mesh::*;
use big_space::floating_origins::FloatingOrigin;
use big_space::prelude::GridCell;
use noise::{Fbm, NoiseFn, Perlin};
use crate::plugins::big_space::big_space_plugin::RootGrid;
use crate::plugins::environment::systems::camera_system::CameraController;
#[derive(Component)]
pub struct PlanetMaker;
#[derive(Resource)]
pub struct PlanetNoise(pub Fbm<Perlin>);
pub fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
root: Res<RootGrid>,
) {
// Diameter ~ Earth (~12,742 km) × 2 to exaggerate terrain if desired
let radius = 12_742_000.0;
let sphere_mesh = meshes.add(
SphereMeshBuilder::new(radius, SphereKind::Ico { subdivisions: 100 })
.build(),
);
let material_handle = materials.add(StandardMaterial::from(Color::rgb(0.3, 0.6, 1.0)));
commands.entity(root.0).with_children(|parent| {
parent.spawn((
Name::new("Planet"),
Mesh3d(sphere_mesh.clone()),
MeshMaterial3d(material_handle),
GridCell::<i64>::ZERO,
Transform::default(),
PlanetMaker,
Wireframe,
));
});
}
pub(crate) fn setup_noise(mut commands: Commands) {
let fbm_noise = Fbm::<Perlin>::new(0);
commands.insert_resource(PlanetNoise(fbm_noise));
}
pub fn deform_planet(
mut meshes: ResMut<Assets<Mesh>>,
noise: Res<PlanetNoise>,
query: Query<&Mesh3d, With<PlanetMaker>>,
) {
let frequency = 4.0 / 12_742_000.0;
let amplitude = 100_000.0;
for mesh3d in query.iter() {
let handle: &Handle<Mesh> = &mesh3d.0;
if let Some(mesh) = meshes.get_mut(handle) {
// 1. Immutable borrow to extract normals (or default)
let normals: Vec<[f32; 3]> = if let Some(VertexAttributeValues::Float32x3(vals)) =
mesh.attribute(Mesh::ATTRIBUTE_NORMAL)
{
vals.clone()
} else {
// default normals if none exist
let count = mesh
.attribute(Mesh::ATTRIBUTE_POSITION)
.and_then(|attr| match attr {
VertexAttributeValues::Float32x3(v) => Some(v.len()),
_ => None,
})
.unwrap_or(0);
vec![[0.0, 1.0, 0.0]; count]
};
// 2. Drop the immutable borrow, then mutable-borrow positions
if let Some(VertexAttributeValues::Float32x3(positions)) =
mesh.attribute_mut(Mesh::ATTRIBUTE_POSITION)
{
// Now mutate positions using the pre-fetched normals
for (i, pos) in positions.iter_mut().enumerate() {
let mut vertex = Vec3::new(pos[0], pos[1], pos[2]);
let normal = Vec3::new(
normals[i][0],
normals[i][1],
normals[i][2],
);
let unit_dir = vertex.normalize();
let sample = [
unit_dir.x as f64 * frequency as f64,
unit_dir.y as f64 * frequency as f64,
unit_dir.z as f64 * frequency as f64,
];
let noise_value = noise.0.get(sample) as f32;
let offset = normal * (noise_value * amplitude);
let new_pos = unit_dir * (vertex.length() + offset.length());
*pos = [new_pos.x, new_pos.y, new_pos.z];
}
mesh.compute_smooth_normals();
}
// Force AABB recalc
mesh.remove_attribute(Mesh::ATTRIBUTE_COLOR);
}
}
}

View File

@ -0,0 +1,185 @@
use crate::plugins::big_space::big_space_plugin::RootGrid;
use crate::plugins::environment::systems::voxels::structure::*;
use bevy::prelude::*;
use bevy::render::mesh::*;
use noise::{NoiseFn, Perlin};
pub fn setup(
mut commands: Commands,
root: Res<RootGrid>,
) {
let unit_size = 1.0_f32;
let octree_base_size = 64.0 * unit_size;
let octree_depth = 10;
// 1. Create octree and wrap in Arc<Mutex<>> for thread-safe generation
let mut octree = SparseVoxelOctree::new(octree_depth, octree_base_size, false, false, false);
// 2. Generate sphere in parallel, dropping the cloned Arc inside the function
let color = Color::rgb(0.2, 0.8, 0.2);
generate_voxel_sphere(&mut octree, 110, color);
// 4. Spawn entity with both Transform and the real octree component
commands.entity(root.0).with_children(|parent| {
parent.spawn((Transform::default(), octree));
});
}
fn generate_voxel_sphere(
octree: &mut SparseVoxelOctree,
planet_radius: i32,
voxel_color: Color,
) {
// For simplicity, we center the sphere around (0,0,0).
// We'll loop over a cubic region [-planet_radius, +planet_radius] in x, y, z
let min = -planet_radius;
let max = planet_radius;
let step = octree.get_spacing_at_depth(octree.max_depth);
for ix in min..=max {
let x = ix;
for iy in min..=max {
let y = iy;
for iz in min..=max {
let z = iz;
// Check if within sphere of radius `planet_radius`
let dist2 = x * x + y * y + z * z;
if dist2 <= planet_radius * planet_radius {
// Convert (x,y,z) to world space, stepping by `voxel_step`.
let wx = x as f32 * step;
let wy = y as f32 * step;
let wz = z as f32 * step;
let position = Vec3::new(wx, wy, wz);
// Insert the voxel
let voxel = Voxel {
color: voxel_color,
};
octree.insert(position, voxel);
}
}
}
}
}
/// Inserts a 16x256x16 "column" of voxels into the octree at (0,0,0) corner.
/// If you want it offset or centered differently, just adjust the for-loop ranges or offsets.
fn generate_voxel_rect(
octree: &mut SparseVoxelOctree,
voxel_color: Color,
) {
// The dimensions of our rectangle: 16 x 256 x 16
let size_x = 16;
let size_y = 256;
let size_z = 16;
// We'll get the voxel spacing (size at the deepest level), same as in your sphere code.
let step = octree.get_spacing_at_depth(octree.max_depth);
// Triple-nested loop for each voxel in [0..16, 0..256, 0..16]
for ix in 0..size_x {
let x = ix as f32;
for iy in 0..size_y {
let y = iy as f32;
for iz in 0..size_z {
let z = iz as f32;
// Convert (x,y,z) to world coordinates
let wx = x * step;
let wy = y * step;
let wz = z * step;
let position = Vec3::new(wx, wy, wz);
// Insert the voxel
let voxel = Voxel {
color: voxel_color,
};
octree.insert(position, voxel);
}
}
}
}
fn generate_large_plane(
octree: &mut SparseVoxelOctree,
width: usize,
depth: usize,
color: Color,
) {
// We'll get the voxel spacing (size at the deepest level).
let step = octree.get_spacing_at_depth(octree.max_depth);
// Double-nested loop for each voxel in [0..width, 0..depth],
// with y=0.
for ix in 0..width {
let x = ix as f32;
for iz in 0..depth {
let z = iz as f32;
// y is always 0.
let y = 0.0;
// Convert (x,0,z) to world coordinates
let wx = x * step;
let wy = y * step;
let wz = z * step;
let position = Vec3::new(wx, wy, wz);
// Insert the voxel
let voxel = Voxel {
color,
};
octree.insert(position, voxel);
}
}
}
pub fn generate_solid_plane_with_noise(
octree: &mut SparseVoxelOctree,
width: usize,
depth: usize,
color: Color,
noise: &Perlin,
frequency: f32,
amplitude: f32,
) {
// Size of one voxel at the deepest level
let step = octree.get_spacing_at_depth(octree.max_depth);
for ix in 0..width {
let x = ix as f32;
for iz in 0..depth {
let z = iz as f32;
// Sample Perlin noise at scaled coordinates
let sample_x = x * frequency;
let sample_z = z * frequency;
let noise_val = noise.get([sample_x as f64, sample_z as f64]) as f32;
// Height in world units
let height_world = noise_val * amplitude;
// Convert height to number of voxel layers
let max_layer = (height_world / step).ceil() as usize;
// Fill from layer 0 up to max_layer
for iy in 0..=max_layer {
let position = Vec3::new(
x * step,
iy as f32 * step,
z * step,
);
let voxel = Voxel { color };
octree.insert(position, voxel);
}
}
}
}

View File

@ -0,0 +1,32 @@
use bevy::prelude::*;
use crate::plugins::environment::systems::voxels::structure::{ChunkKey, SparseVoxelOctree, Voxel, CHUNK_POW, CHUNK_SIZE};
/// Component attached to the entity that owns the mesh of one chunk.
impl SparseVoxelOctree {
pub fn chunk_has_any_voxel(&self, key: ChunkKey) -> bool {
// world-space centre of the chunk
let step = self.get_spacing_at_depth(self.max_depth);
let half = self.size * 0.5;
let centre = Vec3::new(
(key.0 as f32 + 0.5) * CHUNK_SIZE as f32 * step - half,
(key.1 as f32 + 0.5) * CHUNK_SIZE as f32 * step - half,
(key.2 as f32 + 0.5) * CHUNK_SIZE as f32 * step - half,
);
// depth of the octree node that exactly matches one chunk
let depth = self.max_depth.saturating_sub(CHUNK_POW);
// normalised coordinates of that centre at the chosen depth
let norm = self.normalize_to_voxel_at_depth(centre, depth);
// walk the tree down to that node …
if let Some(node) =
Self::get_node_at_depth(&self.root, norm.x, norm.y, norm.z, depth)
{
// … and ask whether that node or any child contains voxels
return self.has_volume(node);
}
false
}
}

View File

@ -0,0 +1,41 @@
use std::collections::{HashMap, VecDeque};
use bevy::prelude::*;
use crate::plugins::environment::systems::voxels::helper::world_to_chunk;
use crate::plugins::environment::systems::voxels::structure::*;
/// despawn (or hide) every chunk entity whose centre is farther away than the
/// configured radius
pub fn despawn_distant_chunks(
mut commands : Commands,
cam_q : Query<&GlobalTransform, With<Camera>>,
tree_q : Query<&SparseVoxelOctree>,
mut spawned : ResMut<SpawnedChunks>,
chunk_q : Query<(Entity,
&Chunk,
&Mesh3d,
&MeshMaterial3d<StandardMaterial>)>,
mut meshes : ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
cfg : Res<ChunkCullingCfg>,
) {
let tree = tree_q.single();
let cam = cam_q.single().translation();
let centre = world_to_chunk(tree, cam);
for (ent, chunk, mesh3d, mat3d) in chunk_q.iter() {
let ChunkKey(x, y, z) = chunk.key;
if (x - centre.0).abs() > cfg.view_distance_chunks ||
(y - centre.1).abs() > cfg.view_distance_chunks ||
(z - centre.2).abs() > cfg.view_distance_chunks {
// free assets borrow, don't move
meshes.remove(&mesh3d.0);
materials.remove(&mat3d.0);
commands.entity(ent).despawn_recursive();
spawned.0.remove(&chunk.key);
}
}
}

View File

@ -0,0 +1,145 @@
use bevy::prelude::*;
use crate::plugins::environment::systems::voxels::structure::*;
/// Visualize each node of the octree as a scaled cuboid, **center-based**.
/// `octree_tf.translation` is the world-space center of the root bounding box.
pub fn visualize_octree_system(
mut gizmos: Gizmos,
octree_query: Query<(&SparseVoxelOctree, &Transform)>,
) {
for (octree, octree_tf) in octree_query.iter() {
// The root node covers [-size/2..+size/2], so half_size is:
let half_size = octree.size * 0.5;
// Draw a translucent cuboid for the root
gizmos.cuboid(
Transform::from_translation(octree_tf.translation)
.with_scale(Vec3::splat(octree.size)),
Color::rgba(1.0, 1.0, 0.0, 0.15),
);
// Recursively draw children:
// Start from depth=0. The node at depth=0 has bounding side = octree.size.
visualize_recursive_center(
&mut gizmos,
&octree.root,
octree_tf.translation, // center of root in world
octree.size,
0,
octree.max_depth,
);
}
}
/// Recursively draws cuboids for each node.
/// We follow the same indexing as insert_recursive, i.e. bit patterns:
/// i=0 => child in (-x,-y,-z) quadrant,
/// i=1 => (+x,-y,-z), i=2 => (-x,+y,-z), etc.
fn visualize_recursive_center(
gizmos: &mut Gizmos,
node: &OctreeNode,
parent_center: Vec3,
parent_size: f32,
depth: u32,
max_depth: u32,
) {
if depth >= max_depth {
return;
}
if let Some(children) = &node.children {
// Each child is half the parents size
let child_size = parent_size * 0.5;
let half = child_size * 0.5;
for (i, child) in children.iter().enumerate() {
// For i in [0..8], bits: x=1, y=2, z=4
let offset_x = if (i & 1) != 0 { half } else { -half };
let offset_y = if (i & 2) != 0 { half } else { -half };
let offset_z = if (i & 4) != 0 { half } else { -half };
let child_center = parent_center + Vec3::new(offset_x, offset_y, offset_z);
// Draw the child bounding box
gizmos.cuboid(
Transform::from_translation(child_center).with_scale(Vec3::splat(child_size)),
Color::rgba(0.5, 1.0, 0.5, 0.15), // greenish
);
// Recurse
visualize_recursive_center(
gizmos,
child,
child_center,
child_size,
depth + 1,
max_depth,
);
}
} else {
// If node.is_leaf && node.voxel.is_some(), draw a smaller marker
if node.is_leaf {
if let Some(voxel) = node.voxel {
// We'll choose a size that's a fraction of the parent's size.
// For example, 25% of the parent bounding box dimension.
let leaf_size = parent_size * 0.25;
// Draw a small cuboid at the same center as the parent node.
gizmos.cuboid(
Transform::from_translation(parent_center)
.with_scale(Vec3::splat(leaf_size)),
voxel.color,
);
}
}
}
}
#[allow(dead_code)]
pub fn draw_grid(
mut gizmos: Gizmos,
camera_query: Query<&Transform, With<Camera>>,
octree_query: Query<(&SparseVoxelOctree, &Transform)>,
) {
let camera_tf = camera_query.single();
let camera_pos = camera_tf.translation;
for (octree, octree_tf) in octree_query.iter() {
let half_size = octree.size * 0.5;
let root_center = octree_tf.translation;
// Voxel spacing at max depth
let spacing = octree.get_spacing_at_depth(octree.max_depth);
let grid_count = (octree.size / spacing) as i32;
// We'll define the bounding region as [center-half_size .. center+half_size].
// So the min corner is (root_center - half_size).
let min_corner = root_center - Vec3::splat(half_size);
// Draw lines in X & Z directions (like a ground plane).
for i in 0..=grid_count {
let offset = i as f32 * spacing;
// 1) line along Z
let x = min_corner.x + offset;
let z1 = min_corner.z;
let z2 = min_corner.z + (grid_count as f32 * spacing);
let p1 = Vec3::new(x, min_corner.y, z1);
let p2 = Vec3::new(x, min_corner.y, z2);
// offset by -camera_pos for stable Gizmos in large coords
let p1_f32 = p1 - camera_pos;
let p2_f32 = p2 - camera_pos;
gizmos.line(p1_f32, p2_f32, Color::WHITE);
// 2) line along X
let z = min_corner.z + offset;
let x1 = min_corner.x;
let x2 = min_corner.x + (grid_count as f32 * spacing);
let p3 = Vec3::new(x1, min_corner.y, z) - camera_pos;
let p4 = Vec3::new(x2, min_corner.y, z) - camera_pos;
gizmos.line(p3, p4, Color::WHITE);
}
}
}

View File

@ -0,0 +1,340 @@
use bevy::prelude::*;
use crate::plugins::environment::systems::voxels::structure::*;
impl SparseVoxelOctree {
pub fn ray_intersects_aabb(&self,ray: &Ray, aabb: &AABB) -> bool {
let inv_dir = 1.0 / ray.direction;
let t1 = (aabb.min - ray.origin) * inv_dir;
let t2 = (aabb.max - ray.origin) * inv_dir;
let t_min = t1.min(t2);
let t_max = t1.max(t2);
let t_enter = t_min.max_element();
let t_exit = t_max.min_element();
t_enter <= t_exit && t_exit >= 0.0
}
/// Returns the size of one voxel at the given depth.
pub fn get_spacing_at_depth(&self, depth: u32) -> f32 {
let effective = depth.min(self.max_depth);
self.size / (2_u32.pow(effective)) as f32
}
/// Center-based: [-size/2..+size/2]. Shift +half_size => [0..size], floor, shift back.
pub fn normalize_to_voxel_at_depth(&self, position: Vec3, depth: u32) -> Vec3 {
// Convert world coordinate to normalized [0,1] space.
let half_size = self.size * 0.5;
// Shift to [0, self.size]
let shifted = (position + Vec3::splat(half_size)) / self.size;
// Determine the number of voxels along an edge at the given depth.
let voxel_count = 2_u32.pow(depth) as f32;
// Get the voxel index (as a float) and then compute the center in normalized space.
let voxel_index = (shifted * voxel_count).floor();
let voxel_center = (voxel_index + Vec3::splat(0.5)) / voxel_count;
voxel_center
}
pub fn denormalize_voxel_center(&self, voxel_center: Vec3) -> Vec3 {
let half_size = self.size * 0.5;
// Convert the normalized voxel center back to world space.
voxel_center * self.size - Vec3::splat(half_size)
}
pub fn compute_child_bounds(&self, bounds: &AABB, index: usize) -> AABB {
let min = bounds.min;
let max = bounds.max;
let center = (min + max) / 2.0;
let x_min = if (index & 1) == 0 { min.x } else { center.x };
let x_max = if (index & 1) == 0 { center.x } else { max.x };
let y_min = if (index & 2) == 0 { min.y } else { center.y };
let y_max = if (index & 2) == 0 { center.y } else { max.y };
let z_min = if (index & 4) == 0 { min.z } else { center.z };
let z_max = if (index & 4) == 0 { center.z } else { max.z };
let child_bounds = AABB {
min: Vec3::new(x_min, y_min, z_min),
max: Vec3::new(x_max, y_max, z_max),
};
child_bounds
}
pub fn ray_intersects_aabb_with_normal(
&self,
ray: &Ray,
aabb: &AABB,
) -> Option<(f32, f32, Vec3)> {
// Define a safe inverse function to avoid division by zero.
let safe_inv = |d: f32| if d.abs() < 1e-6 { 1e6 } else { 1.0 / d };
let inv_dir = Vec3::new(
safe_inv(ray.direction.x),
safe_inv(ray.direction.y),
safe_inv(ray.direction.z),
);
let t1 = (aabb.min - ray.origin) * inv_dir;
let t2 = (aabb.max - ray.origin) * inv_dir;
let tmin = t1.min(t2);
let tmax = t1.max(t2);
let t_enter = tmin.max_element();
let t_exit = tmax.min_element();
if t_enter <= t_exit && t_exit >= 0.0 {
let epsilon = 1e-6;
let mut normal = Vec3::ZERO;
// Determine which face was hit by comparing t_enter to the computed values.
if (t_enter - t1.x).abs() < epsilon || (t_enter - t2.x).abs() < epsilon {
normal = Vec3::new(if ray.direction.x < 0.0 { 1.0 } else { -1.0 }, 0.0, 0.0);
} else if (t_enter - t1.y).abs() < epsilon || (t_enter - t2.y).abs() < epsilon {
normal = Vec3::new(0.0, if ray.direction.y < 0.0 { 1.0 } else { -1.0 }, 0.0);
} else if (t_enter - t1.z).abs() < epsilon || (t_enter - t2.z).abs() < epsilon {
normal = Vec3::new(0.0, 0.0, if ray.direction.z < 0.0 { 1.0 } else { -1.0 });
}
Some((t_enter, t_exit, normal))
} else {
None
}
}
/// Checks if (x,y,z) is within [-size/2..+size/2].
pub fn contains(&self, x: f32, y: f32, z: f32) -> bool {
let half_size = self.size / 2.0;
let eps = 1e-6;
(x >= -half_size - eps && x < half_size + eps)
&& (y >= -half_size - eps && y < half_size + eps)
&& (z >= -half_size - eps && z < half_size + eps)
}
/// Retrieve a voxel at world coordinates by normalizing and looking up.
pub fn get_voxel_at_world_coords(&self, position: Vec3) -> Option<&Voxel> {
let aligned = self.normalize_to_voxel_at_depth(position, self.max_depth);
self.get_voxel_at(aligned.x, aligned.y, aligned.z)
}
pub fn local_to_world(&self, local_pos: Vec3) -> Vec3 {
// Half the total octree size, used to shift the center to the origin.
let half_size = self.size * 0.5;
// Convert local coordinate to world space:
// 1. Subtract 0.5 to center the coordinate at zero (range becomes [-0.5, 0.5])
// 2. Multiply by the total size to scale into world units.
// 3. Add half_size to shift from a centerbased system to one starting at zero.
(local_pos - Vec3::splat(0.5)) * self.size + Vec3::splat(half_size)
}
/// Helper function to recursively traverse the octree to a specific depth.
pub(crate) fn get_node_at_depth(
node: &OctreeNode,
x: f32,
y: f32,
z: f32,
depth: u32,
) -> Option<&OctreeNode> {
if depth == 0 {
return Some(node); // We've reached the desired depth
}
if let Some(ref children) = node.children {
// Determine which child to traverse into
let epsilon = 1e-6;
let index = ((x >= 0.5 - epsilon) as usize)
+ ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
// Recurse into the correct child
Self::get_node_at_depth(
&children[index],
adjust_coord(x),
adjust_coord(y),
adjust_coord(z),
depth - 1,
)
} else {
None // Node has no children at this depth
}
}
pub fn has_volume(&self, node: &OctreeNode) -> bool {
// Check if this node is a leaf with a voxel
if node.is_leaf && node.voxel.is_some() {
return true;
}
// If the node has children, recursively check them
if let Some(children) = &node.children {
for child in children.iter() {
if self.has_volume(child) {
return true; // If any child has a voxel, the chunk has volume
}
}
}
// If no voxel found in this node or its children
false
}
}
/// Returns the (face_normal, local_offset) for the given neighbor direction.
/// - `dx, dy, dz`: The integer direction of the face (-1,0,0 / 1,0,0 / etc.)
/// - `voxel_size_f`: The world size of a single voxel (e.g. step as f32).
pub fn face_orientation(dx: f32, dy: f32, dz: f32, voxel_size_f: f32) -> (Vec3, Vec3) {
// We'll do a match on the direction
match (dx, dy, dz) {
// Negative X => face normal is (-1, 0, 0), local offset is -voxel_size/2 in X
(-1.0, 0.0, 0.0) => {
let normal = Vec3::new(-1.0, 0.0, 0.0);
let offset = Vec3::new(-voxel_size_f * 0.5, 0.0, 0.0);
(normal, offset)
}
// Positive X
(1.0, 0.0, 0.0) => {
let normal = Vec3::new(1.0, 0.0, 0.0);
let offset = Vec3::new(voxel_size_f * 0.5, 0.0, 0.0);
(normal, offset)
}
// Negative Y
(0.0, -1.0, 0.0) => {
let normal = Vec3::new(0.0, -1.0, 0.0);
let offset = Vec3::new(0.0, -voxel_size_f * 0.5, 0.0);
(normal, offset)
}
// Positive Y
(0.0, 1.0, 0.0) => {
let normal = Vec3::new(0.0, 1.0, 0.0);
let offset = Vec3::new(0.0, voxel_size_f * 0.5, 0.0);
(normal, offset)
}
// Negative Z
(0.0, 0.0, -1.0) => {
let normal = Vec3::new(0.0, 0.0, -1.0);
let offset = Vec3::new(0.0, 0.0, -voxel_size_f * 0.5);
(normal, offset)
}
// Positive Z
(0.0, 0.0, 1.0) => {
let normal = Vec3::new(0.0, 0.0, 1.0);
let offset = Vec3::new(0.0, 0.0, voxel_size_f * 0.5);
(normal, offset)
}
// If the direction is not one of the 6 axis directions, you might skip or handle differently
_ => {
// For safety, we can panic or return a default.
// But typically you won't call face_orientation with an invalid direction
panic!("Invalid face direction: ({}, {}, {})", dx, dy, dz);
}
}
}
pub(crate) fn chunk_key_from_world(tree: &SparseVoxelOctree, pos: Vec3) -> ChunkKey {
let half = tree.size * 0.5;
let step = tree.get_spacing_at_depth(tree.max_depth);
let scale = CHUNK_SIZE as f32 * step; // metres per chunk
ChunkKey(
((pos.x + half) / scale).floor() as i32,
((pos.y + half) / scale).floor() as i32,
((pos.z + half) / scale).floor() as i32,
)
}
pub fn world_to_chunk(tree: &SparseVoxelOctree, p: Vec3) -> ChunkKey {
let step = tree.get_spacing_at_depth(tree.max_depth);
let half = tree.size * 0.5;
let scale = CHUNK_SIZE as f32 * step;
ChunkKey(
((p.x + half) / scale).floor() as i32,
((p.y + half) / scale).floor() as i32,
((p.z + half) / scale).floor() as i32,
)
}
pub fn chunk_center_world(tree: &SparseVoxelOctree, key: ChunkKey) -> Vec3 {
let half = tree.size * 0.5;
let step = tree.get_spacing_at_depth(tree.max_depth);
Vec3::new(
(key.0 as f32 + 0.5) * CHUNK_SIZE as f32 * step - half,
(key.1 as f32 + 0.5) * CHUNK_SIZE as f32 * step - half,
(key.2 as f32 + 0.5) * CHUNK_SIZE as f32 * step - half,
)
}
impl AABB {
pub fn intersects_aabb(&self, other: &AABB) -> bool {
self.min.x <= other.max.x &&
self.max.x >= other.min.x &&
self.min.y <= other.max.y &&
self.max.y >= other.min.y &&
self.min.z <= other.max.z &&
self.max.z >= other.min.z
}
pub fn center(&self) -> Vec3 {
(self.min + self.max) * 0.5
}
}
impl SparseVoxelOctree {
pub fn collect_voxels_in_region(&self, min: Vec3, max: Vec3) -> Vec<(Vec3, Voxel)> {
let half_size = self.size * 0.5;
let root_bounds = AABB {
min: Vec3::new(-half_size, -half_size, -half_size),
max: Vec3::new(half_size, half_size, half_size),
};
let mut voxels = Vec::new();
self.collect_voxels_in_region_recursive(&self.root, root_bounds, min, max, &mut voxels);
voxels
}
fn collect_voxels_in_region_recursive(
&self,
node: &OctreeNode,
node_bounds: AABB,
min: Vec3,
max: Vec3,
out: &mut Vec<(Vec3, Voxel)>,
) {
if !node_bounds.intersects_aabb(&AABB { min, max }) {
return;
}
if node.is_leaf {
if let Some(voxel) = &node.voxel {
let center = node_bounds.center();
if center.x >= min.x && center.x <= max.x &&
center.y >= min.y && center.y <= max.y &&
center.z >= min.z && center.z <= max.z
{
out.push((center, *voxel));
}
}
}
if let Some(children) = &node.children {
for (i, child) in children.iter().enumerate() {
let child_bounds = self.compute_child_bounds(&node_bounds, i);
self.collect_voxels_in_region_recursive(child, child_bounds, min, max, out);
}
}
}
}

View File

@ -0,0 +1,38 @@
use bevy::prelude::*;
use crate::plugins::environment::systems::voxels::helper::chunk_center_world;
use crate::plugins::environment::systems::voxels::structure::{Chunk, ChunkLod, ChunkCullingCfg, SparseVoxelOctree, CHUNK_SIZE};
/// Update each chunk's LOD level based on its distance from the camera.
/// Chunks farther away get a higher LOD value (coarser mesh).
pub fn update_chunk_lods(
cam_q: Query<&GlobalTransform, With<Camera>>,
mut chunks: Query<(&Chunk, &mut ChunkLod)>,
mut tree_q: Query<&mut SparseVoxelOctree>,
cfg: Res<ChunkCullingCfg>,
) {
let cam_pos = cam_q.single().translation();
// Borrow the octree only once to avoid repeated query lookups
let mut tree = tree_q.single_mut();
let max_depth = tree.max_depth;
let range_step = cfg.view_distance_chunks as f32 / max_depth as f32;
let chunk_size = CHUNK_SIZE as f32 * tree.get_spacing_at_depth(max_depth);
let mut changed = Vec::new();
for (chunk, mut lod) in chunks.iter_mut() {
let center = chunk_center_world(&tree, chunk.key);
let dist_chunks = cam_pos.distance(center) / chunk_size;
let mut level = (dist_chunks / range_step).floor() as u32;
if level > max_depth {
level = max_depth;
}
if lod.0 != level {
lod.0 = level;
changed.push(chunk.key);
}
}
for key in changed {
tree.dirty_chunks.insert(key);
}
}

View File

@ -0,0 +1,484 @@
use bevy::asset::RenderAssetUsages;
use bevy::prelude::*;
use bevy::render::mesh::{Indices, PrimitiveTopology, VertexAttributeValues, Mesh};
use crate::plugins::environment::systems::voxels::structure::*;
/*pub(crate) fn mesh_chunk(
buffer: &[[[Option<Voxel>; CHUNK_SIZE as usize]; CHUNK_SIZE as usize]; CHUNK_SIZE as usize],
origin: Vec3,
step: f32,
tree: &SparseVoxelOctree,
) -> Mesh {
let mut positions = Vec::<[f32; 3]>::new();
let mut normals = Vec::<[f32; 3]>::new();
let mut uvs = Vec::<[f32; 2]>::new();
let mut indices = Vec::<u32>::new();
// helper safe test for a filled voxel
let filled = |x: i32, y: i32, z: i32| -> bool {
if (0..CHUNK_SIZE).contains(&x)
&& (0..CHUNK_SIZE).contains(&y)
&& (0..CHUNK_SIZE).contains(&z)
{
buffer[x as usize][y as usize][z as usize].is_some()
} else {
let world = origin + Vec3::new(x as f32 * step,
y as f32 * step,
z as f32 * step);
tree.get_voxel_at_world_coords(world).is_some()
}
};
// push a single quad
let mut quad = |base: Vec3,
size: Vec2,
n: Vec3, // face normal (-1|+1 on one axis)
u: Vec3,
v: Vec3|
{
let i0 = positions.len() as u32;
// 4 vertices -----------------------------------------------------------
positions.extend_from_slice(&[
(base).into(),
(base + u * size.x).into(),
(base + u * size.x + v * size.y).into(),
(base + v * size.y).into(),
]);
normals.extend_from_slice(&[[n.x, n.y, n.z]; 4]);
uvs .extend_from_slice(&[[0.0,1.0],[1.0,1.0],[1.0,0.0],[0.0,0.0]]);
// indices -- flip for the negative-side faces -------------------------
if n.x + n.y + n.z >= 0.0 {
// CCW (front-face)
indices.extend_from_slice(&[i0, i0 + 1, i0 + 2, i0 + 2, i0 + 3, i0]);
} else {
// CW → reverse two vertices so that the winding becomes CCW again
indices.extend_from_slice(&[i0, i0 + 3, i0 + 2, i0 + 2, i0 + 1, i0]);
}
};
//-----------------------------------------------------------------------
// Zfaces
//-----------------------------------------------------------------------
for z in 0..CHUNK_SIZE { // -Z faces (normal Z)
let nz = -1;
let voxel_z = z;
let neighbour_z = voxel_z as i32 + nz;
for y in 0..CHUNK_SIZE {
let mut x = 0;
while x < CHUNK_SIZE {
if filled(x, y, voxel_z) && !filled(x, y, neighbour_z) {
// greedy run along +X
let run_start = x;
let mut run = 1;
while x + run < CHUNK_SIZE
&& filled(x + run, y, voxel_z)
&& !filled(x + run, y, neighbour_z)
{
run += 1;
}
let face_z = voxel_z as f32 * step + if nz == 1 { step } else { 0.0 };
let world_base = origin + Vec3::new(run_start as f32 * step, y as f32 * step, face_z);
quad(world_base,
Vec2::new(run as f32 * step, step),
Vec3::new(0.0, 0.0, nz as f32),
Vec3::X,
Vec3::Y);
x += run;
} else {
x += 1;
}
}
}
}
// ------ 2nd pass : +Z faces ---------------------------------------------
for z in 0..CHUNK_SIZE { // +Z faces (normal +Z)
let nz = 1;
let voxel_z = z; // this voxel
let neighbour_z = voxel_z as i32 + nz; // cell “in front of it”
for y in 0..CHUNK_SIZE {
let mut x = 0;
while x < CHUNK_SIZE {
if filled(x, y, voxel_z) && !filled(x, y, neighbour_z) {
let run_start = x;
let mut run = 1;
while x + run < CHUNK_SIZE
&& filled(x + run, y, voxel_z)
&& !filled(x + run, y, neighbour_z)
{ run += 1; }
let world_base = origin
+ Vec3::new(run_start as f32 * step,
y as f32 * step,
(voxel_z + 1) as f32 * step); // +1 !
quad(world_base,
Vec2::new(run as f32 * step, step),
Vec3::new(0.0, 0.0, 1.0), // +Z
Vec3::X,
Vec3::Y);
x += run;
} else {
x += 1;
}
}
}
}
// ────────────────────────────────────────────────────────────────────────────
// X faces (-X pass … original code)
// ────────────────────────────────────────────────────────────────────────────
for x in 0..CHUNK_SIZE { // -X faces (normal X)
let nx = -1;
let voxel_x = x;
let neighbour_x = voxel_x as i32 + nx;
for z in 0..CHUNK_SIZE {
let mut y = 0;
while y < CHUNK_SIZE {
if filled(voxel_x, y, z) && !filled(neighbour_x, y, z) {
let run_start = y;
let mut run = 1;
while y + run < CHUNK_SIZE
&& filled(voxel_x, y + run, z)
&& !filled(neighbour_x, y + run, z)
{ run += 1; }
// **fixed x-coordinate: add step when nx == +1**
let face_x = voxel_x as f32 * step + if nx == 1 { step } else { 0.0 };
let world_base = origin
+ Vec3::new(face_x,
run_start as f32 * step,
z as f32 * step);
quad(world_base,
Vec2::new(run as f32 * step, step),
Vec3::new(nx as f32, 0.0, 0.0),
Vec3::Y,
Vec3::Z);
y += run;
} else {
y += 1;
}
}
}
}
// ------ 2nd pass : +X faces ---------------------------------------------
for x in 0..CHUNK_SIZE { // +X faces (normal +X)
let nx = 1;
let voxel_x = x;
let neighbour_x = voxel_x as i32 + nx;
for z in 0..CHUNK_SIZE {
let mut y = 0;
while y < CHUNK_SIZE {
if filled(voxel_x, y, z) && !filled(neighbour_x, y, z) {
let run_start = y;
let mut run = 1;
while y + run < CHUNK_SIZE
&& filled(voxel_x, y + run, z)
&& !filled(neighbour_x, y + run, z)
{ run += 1; }
let world_base = origin
+ Vec3::new((voxel_x + 1) as f32 * step, // +1 !
run_start as f32 * step,
z as f32 * step);
quad(world_base,
Vec2::new(run as f32 * step, step),
Vec3::new(1.0, 0.0, 0.0), // +X
Vec3::Y,
Vec3::Z);
y += run;
} else {
y += 1;
}
}
}
}
// ────────────────────────────────────────────────────────────────────────────
// Y faces (-Y pass … original code)
// ────────────────────────────────────────────────────────────────────────────
for y in 0..CHUNK_SIZE { // -Y faces (normal Y)
let ny = -1;
let voxel_y = y;
let neighbour_y = voxel_y as i32 + ny;
for x in 0..CHUNK_SIZE {
let mut z = 0;
while z < CHUNK_SIZE {
if filled(x, voxel_y, z) && !filled(x, neighbour_y, z) {
let run_start = z;
let mut run = 1;
while z + run < CHUNK_SIZE
&& filled(x, voxel_y, z + run)
&& !filled(x, neighbour_y, z + run)
{ run += 1; }
// **fixed y-coordinate: add step when ny == +1**
let face_y = voxel_y as f32 * step + if ny == 1 { step } else { 0.0 };
let world_base = origin
+ Vec3::new(x as f32 * step,
face_y,
run_start as f32 * step);
quad(world_base,
Vec2::new(run as f32 * step, step),
Vec3::new(0.0, ny as f32, 0.0),
Vec3::Z,
Vec3::X);
z += run;
} else {
z += 1;
}
}
}
}
// ------ 2nd pass : +Y faces ---------------------------------------------
for y in 0..CHUNK_SIZE { // +Y faces (normal +Y)
let ny = 1;
let voxel_y = y;
let neighbour_y = voxel_y as i32 + ny;
for x in 0..CHUNK_SIZE {
let mut z = 0;
while z < CHUNK_SIZE {
if filled(x, voxel_y, z) && !filled(x, neighbour_y, z) {
let run_start = z;
let mut run = 1;
while z + run < CHUNK_SIZE
&& filled(x, voxel_y, z + run)
&& !filled(x, neighbour_y, z + run)
{ run += 1; }
let world_base = origin
+ Vec3::new(x as f32 * step,
(voxel_y + 1) as f32 * step, // +1 !
run_start as f32 * step);
quad(world_base,
Vec2::new(run as f32 * step, step),
Vec3::new(0.0, 1.0, 0.0), // +Y
Vec3::Z,
Vec3::X);
z += run;
} else {
z += 1;
}
}
}
}
//-----------------------------------------------------------------------
// build final mesh
//-----------------------------------------------------------------------
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::default());
mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, VertexAttributeValues::Float32x3(positions));
mesh.insert_attribute(Mesh::ATTRIBUTE_NORMAL, VertexAttributeValues::Float32x3(normals));
mesh.insert_attribute(Mesh::ATTRIBUTE_UV_0, VertexAttributeValues::Float32x2(uvs));
mesh.insert_indices(Indices::U32(indices));
mesh
}*/
pub(crate) fn mesh_chunk(
buffer: &[[[Option<Voxel>; CHUNK_SIZE as usize]; CHUNK_SIZE as usize]; CHUNK_SIZE as usize],
origin: Vec3,
step: f32,
tree: &SparseVoxelOctree,
) -> Option<Mesh> {
// ────────────────────────────────────────────────────────────────────────────
// Helpers
// ────────────────────────────────────────────────────────────────────────────
const N: usize = CHUNK_SIZE as usize;
const MASK_LEN: usize = N * N;
// Safe voxel query that falls back to the octree for outofchunk requests.
let filled = |x: i32, y: i32, z: i32| -> bool {
if (0..CHUNK_SIZE).contains(&x)
&& (0..CHUNK_SIZE).contains(&y)
&& (0..CHUNK_SIZE).contains(&z)
{
buffer[x as usize][y as usize][z as usize].is_some()
} else {
let world = origin + Vec3::new(x as f32 * step, y as f32 * step, z as f32 * step);
tree.get_voxel_at_world_coords(world).is_some()
}
};
// Push a single quad (4 vertices, 6 indices). `base` is the lowerleft
// corner in world space; `u`/`v` are the tangent vectors (length 1); `size`
// is expressed in world units along those axes; `n` is the face normal.
// Preallocate vertex buffers for better performance
let voxel_count = N * N * N;
let mut positions = Vec::<[f32; 3]>::with_capacity(voxel_count * 4);
let mut normals = Vec::<[f32; 3]>::with_capacity(voxel_count * 4);
let mut uvs = Vec::<[f32; 2]>::with_capacity(voxel_count * 4);
let mut indices = Vec::<u32>::with_capacity(voxel_count * 6);
let mut push_quad = |base: Vec3, size: Vec2, n: Vec3, u: Vec3, v: Vec3| {
let i0 = positions.len() as u32;
positions.extend_from_slice(&[
(base).into(),
(base + u * size.x).into(),
(base + u * size.x + v * size.y).into(),
(base + v * size.y).into(),
]);
normals.extend_from_slice(&[[n.x, n.y, n.z]; 4]);
uvs.extend_from_slice(&[[0.0, 1.0], [1.0, 1.0], [1.0, 0.0], [0.0, 0.0]]);
if n.x + n.y + n.z >= 0.0 {
indices.extend_from_slice(&[i0, i0 + 1, i0 + 2, i0 + 2, i0 + 3, i0]);
} else {
// Flip winding for faces with a negative normal component sum so the
// result is still counterclockwise.
indices.extend_from_slice(&[i0, i0 + 3, i0 + 2, i0 + 2, i0 + 1, i0]);
}
};
// ────────────────────────────────────────────────────────────────────────────
// Greedy meshing
// ────────────────────────────────────────────────────────────────────────────
// Axes: 0→X, 1→Y, 2→Z. For each axis we process the negative and positive
// faces (dir = 1 / +1).
for (axis, dir) in [ (0, -1), (0, 1), (1, -1), (1, 1), (2, -1), (2, 1) ] {
// Mapping of (u,v) axes and their unit vectors in world space.
let (u_axis, v_axis, face_normal, u_vec, v_vec) = match (axis, dir) {
(0, d) => (1, 2, Vec3::new(d as f32, 0.0, 0.0), Vec3::Y, Vec3::Z),
(1, d) => (2, 0, Vec3::new(0.0, d as f32, 0.0), Vec3::Z, Vec3::X),
(2, d) => (0, 1, Vec3::new(0.0, 0.0, d as f32), Vec3::X, Vec3::Y),
_ => unreachable!(),
};
// Iterate over every slice perpendicular to `axis`. Faces can lie on
// the 0…N grid lines (inclusive) because the positiveside faces of the
// last voxel sit at slice N.
for slice in 0..=N {
// Build the face mask for this slice using a fixed-size array to
// avoid heap allocations.
let mut mask = [false; MASK_LEN];
let mut visited = [false; MASK_LEN];
let idx = |u: usize, v: usize| -> usize { u * N + v };
for u in 0..N {
for v in 0..N {
// Translate (u,v,slice) to (x,y,z) voxel coordinates.
let mut cell = [0i32; 3];
let mut neighbor = [0i32; 3];
cell [axis] = slice as i32 + if dir == 1 { -1 } else { 0 };
neighbor[axis] = cell[axis] + dir;
cell [u_axis] = u as i32;
cell [v_axis] = v as i32;
neighbor[u_axis] = u as i32;
neighbor[v_axis] = v as i32;
if filled(cell[0], cell[1], cell[2]) && !filled(neighbor[0], neighbor[1], neighbor[2]) {
mask[idx(u, v)] = true;
}
}
}
// Greedy merge the mask into maximal rectangles.
for u0 in 0..N {
for v0 in 0..N {
if !mask[idx(u0, v0)] || visited[idx(u0, v0)] {
continue;
}
// Determine the rectangle width.
let mut width = 1;
while u0 + width < N && mask[idx(u0 + width, v0)] && !visited[idx(u0 + width, v0)] {
width += 1;
}
// Determine the rectangle height.
let mut height = 1;
'h: while v0 + height < N {
for du in 0..width {
if !mask[idx(u0 + du, v0 + height)] || visited[idx(u0 + du, v0 + height)] {
break 'h;
}
}
height += 1;
}
// Mark the rectangle area as visited.
for du in 0..width {
for dv in 0..height {
visited[idx(u0 + du, v0 + dv)] = true;
}
}
// Compute worldspace base corner.
let mut base = origin;
match axis {
0 => {
base.x += step * slice as f32;
base.y += step * u0 as f32;
base.z += step * v0 as f32;
}
1 => {
base.x += step * v0 as f32;
base.y += step * slice as f32;
base.z += step * u0 as f32;
}
2 => {
base.x += step * u0 as f32;
base.y += step * v0 as f32;
base.z += step * slice as f32;
}
_ => unreachable!(),
}
let size = Vec2::new(width as f32 * step, height as f32 * step);
push_quad(base, size, face_normal, u_vec, v_vec);
}
}
}
}
// ────────────────────────────────────────────────────────────────────────────
// Final mesh assembly
// ────────────────────────────────────────────────────────────────────────────
if indices.is_empty() {
return None;
}
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::default());
mesh.insert_attribute(
Mesh::ATTRIBUTE_POSITION,
VertexAttributeValues::Float32x3(positions),
);
mesh.insert_attribute(
Mesh::ATTRIBUTE_NORMAL,
VertexAttributeValues::Float32x3(normals),
);
mesh.insert_attribute(
Mesh::ATTRIBUTE_UV_0,
VertexAttributeValues::Float32x2(uvs),
);
mesh.insert_indices(Indices::U32(indices));
Some(mesh)
}

View File

@ -0,0 +1,11 @@
pub mod debug;
pub mod helper;
pub mod octree;
pub mod structure;
mod chunk;
mod meshing;
pub mod render_chunks;
pub mod culling;
pub mod queue_systems;
pub mod lod;

View File

@ -0,0 +1,464 @@
use std::collections::{HashMap, HashSet};
use bevy::asset::Assets;
use bevy::color::Color;
use bevy::math::{DQuat, DVec3};
use bevy::prelude::*;
use bevy::render::mesh::{Indices, PrimitiveTopology, VertexAttributeValues};
use bevy::render::render_asset::RenderAssetUsages;
use crate::plugins::environment::systems::voxels::helper::chunk_key_from_world;
use crate::plugins::environment::systems::voxels::structure::{DirtyVoxel, OctreeNode, Ray, SparseVoxelOctree, Voxel, AABB, NEIGHBOR_OFFSETS, CHUNK_SIZE, ChunkKey};
impl SparseVoxelOctree {
/// Creates a new octree with the specified max depth, size, and wireframe visibility.
pub fn new(max_depth: u32, size: f32, show_wireframe: bool, show_world_grid: bool, show_chunks: bool) -> Self {
Self {
root: OctreeNode::new(),
max_depth,
size,
show_wireframe,
show_world_grid,
show_chunks,
dirty: Vec::new(),
dirty_chunks: Default::default(),
occupied_chunks: Default::default(),
}
}
pub fn insert(&mut self, position: Vec3, voxel: Voxel) {
// Align to the center of the voxel at max_depth
let mut aligned = self.normalize_to_voxel_at_depth(position, self.max_depth);
let mut world_center = self.denormalize_voxel_center(aligned);
// Expand as needed using the denormalized position.
while !self.contains(world_center.x, world_center.y, world_center.z) {
self.expand_root(world_center.x, world_center.y, world_center.z);
// Recompute aligned and world_center after expansion.
aligned = self.normalize_to_voxel_at_depth(position, self.max_depth);
world_center = self.denormalize_voxel_center(aligned);
}
let dirty_voxel = DirtyVoxel{
position: aligned,
};
self.dirty.push(dirty_voxel);
let key = chunk_key_from_world(self, position);
self.dirty_chunks.insert(key);
self.mark_neighbor_chunks_dirty(position);
self.occupied_chunks.insert(key);
Self::insert_recursive(&mut self.root, aligned, voxel, self.max_depth);
}
fn insert_recursive(node: &mut OctreeNode, position: Vec3, voxel: Voxel, depth: u32) {
if depth == 0 {
node.voxel = Some(voxel);
node.is_leaf = true;
return;
}
let epsilon = 1e-6;
// Determine octant index by comparing with 0.5
let index = ((position.x >= 0.5 - epsilon) as usize)
+ ((position.y >= 0.5 - epsilon) as usize * 2)
+ ((position.z >= 0.5 - epsilon) as usize * 4);
// If there are no children, create them.
if node.children.is_none() {
node.children = Some(Box::new(core::array::from_fn(|_| OctreeNode::new())));
node.is_leaf = false;
}
if let Some(ref mut children) = node.children {
// Adjust coordinate into the childs [0, 1] range.
let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
let child_pos = Vec3::new(
adjust_coord(position.x),
adjust_coord(position.y),
adjust_coord(position.z),
);
Self::insert_recursive(&mut children[index], child_pos, voxel, depth - 1);
}
}
pub fn remove(&mut self, position: Vec3) {
let aligned = self.normalize_to_voxel_at_depth(position, self.max_depth);
self.dirty.push(DirtyVoxel { position: aligned });
// mark the chunk
let key = chunk_key_from_world(self, position);
self.dirty_chunks.insert(key);
self.mark_neighbor_chunks_dirty(position);
Self::remove_recursive(
&mut self.root,
aligned.x,
aligned.y,
aligned.z,
self.max_depth,
);
if !self.chunk_has_any_voxel(key) {
self.occupied_chunks.remove(&key);
}
}
pub fn clear_dirty_flags(&mut self) {
self.dirty.clear();
self.dirty_chunks.clear();
}
fn mark_neighbor_chunks_dirty(&mut self, position: Vec3) {
let key = chunk_key_from_world(self, position);
let step = self.get_spacing_at_depth(self.max_depth);
let half = self.size * 0.5;
let gx = ((position.x + half) / step).floor() as i32;
let gy = ((position.y + half) / step).floor() as i32;
let gz = ((position.z + half) / step).floor() as i32;
let lx = gx - key.0 * CHUNK_SIZE;
let ly = gy - key.1 * CHUNK_SIZE;
let lz = gz - key.2 * CHUNK_SIZE;
let mut neighbors = [
(lx == 0, ChunkKey(key.0 - 1, key.1, key.2)),
(lx == CHUNK_SIZE - 1, ChunkKey(key.0 + 1, key.1, key.2)),
(ly == 0, ChunkKey(key.0, key.1 - 1, key.2)),
(ly == CHUNK_SIZE - 1, ChunkKey(key.0, key.1 + 1, key.2)),
(lz == 0, ChunkKey(key.0, key.1, key.2 - 1)),
(lz == CHUNK_SIZE - 1, ChunkKey(key.0, key.1, key.2 + 1)),
];
for (cond, n) in neighbors.iter() {
if *cond && self.occupied_chunks.contains(n) {
self.dirty_chunks.insert(*n);
}
}
}
/// Mark all six neighbor chunks of the given key as dirty if they exist.
pub fn mark_neighbors_dirty_from_key(&mut self, key: ChunkKey) {
let offsets = [
(-1, 0, 0), (1, 0, 0),
(0, -1, 0), (0, 1, 0),
(0, 0, -1), (0, 0, 1),
];
for (dx, dy, dz) in offsets {
let neighbor = ChunkKey(key.0 + dx, key.1 + dy, key.2 + dz);
if self.occupied_chunks.contains(&neighbor) {
self.dirty_chunks.insert(neighbor);
}
}
}
fn remove_recursive(
node: &mut OctreeNode,
x: f32,
y: f32,
z: f32,
depth: u32,
) -> bool {
if depth == 0 {
if node.voxel.is_some() {
node.voxel = None;
node.is_leaf = false;
return true;
} else {
return false;
}
}
if node.children.is_none() {
return false;
}
let epsilon = 1e-6;
let index = ((x >= 0.5 - epsilon) as usize)
+ ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
let child = &mut node.children.as_mut().unwrap()[index];
let should_prune_child = Self::remove_recursive(
child,
adjust_coord(x),
adjust_coord(y),
adjust_coord(z),
depth - 1,
);
if should_prune_child {
// remove the child node
node.children.as_mut().unwrap()[index] = OctreeNode::new();
}
// Check if all children are empty
let all_children_empty = node
.children
.as_ref()
.unwrap()
.iter()
.all(|child| child.is_empty());
if all_children_empty {
node.children = None;
node.is_leaf = true;
return node.voxel.is_none();
}
false
}
fn expand_root(&mut self, _x: f32, _y: f32, _z: f32) {
info!("Root expanding ...");
// Save the old root and its size.
let old_root = std::mem::replace(&mut self.root, OctreeNode::new());
let old_size = self.size;
// Update the octree's size and depth.
self.size *= 2.0;
self.max_depth += 1;
// Reinsert each voxel from the old tree.
let voxels = Self::collect_voxels_from_node(&old_root, old_size);
for (world_pos, voxel, _depth) in voxels {
self.insert(world_pos, voxel);
}
}
/// Helper: Collect all voxels from a given octree node recursively.
/// The coordinate system here assumes the node covers [old_size/2, +old_size/2] in each axis.
fn collect_voxels_from_node(node: &OctreeNode, old_size: f32) -> Vec<(Vec3, Voxel, u32)> {
let mut voxels = Vec::new();
Self::collect_voxels_recursive(node, -old_size / 2.0, -old_size / 2.0, -old_size / 2.0, old_size, 0, &mut voxels);
voxels
}
fn collect_voxels_recursive(
node: &OctreeNode,
x: f32,
y: f32,
z: f32,
size: f32,
depth: u32,
out: &mut Vec<(Vec3, Voxel, u32)>,
) {
if node.is_leaf {
if let Some(voxel) = node.voxel {
// Compute the center of this node's region.
let center = Vec3::new(x + size / 2.0, y + size / 2.0, z + size / 2.0);
out.push((center, voxel, depth));
}
}
if let Some(children) = &node.children {
let half = size / 2.0;
for (i, child) in children.iter().enumerate() {
let offset_x = if (i & 1) != 0 { half } else { 0.0 };
let offset_y = if (i & 2) != 0 { half } else { 0.0 };
let offset_z = if (i & 4) != 0 { half } else { 0.0 };
Self::collect_voxels_recursive(child, x + offset_x, y + offset_y, z + offset_z, half, depth + 1, out);
}
}
}
pub fn traverse(&self) -> Vec<(Vec3, Color, u32)> {
let mut voxels = Vec::new();
// Start at the normalized center (0.5, 0.5, 0.5) rather than (0,0,0)
Self::traverse_recursive(
&self.root,
Vec3::splat(0.5), // normalized center of the root cell
1.0, // full normalized cell size
0,
&mut voxels,
self,
);
voxels
}
fn traverse_recursive(
node: &OctreeNode,
local_center: Vec3,
size: f32,
depth: u32,
out: &mut Vec<(Vec3, Color, u32)>,
octree: &SparseVoxelOctree,
) {
// If a leaf contains a voxel, record its world-space center
if node.is_leaf {
if let Some(voxel) = node.voxel {
out.push((octree.denormalize_voxel_center(local_center), voxel.color, depth));
}
}
// If the node has children, subdivide the cell into 8 subcells.
if let Some(ref children) = node.children {
let offset = size / 4.0; // child center offset from parent center
let new_size = size / 2.0; // each child cell's size in normalized space
for (i, child) in children.iter().enumerate() {
// Compute each axis' offset: use +offset if the bit is set, else -offset.
let dx = if (i & 1) != 0 { offset } else { -offset };
let dy = if (i & 2) != 0 { offset } else { -offset };
let dz = if (i & 4) != 0 { offset } else { -offset };
let child_center = local_center + Vec3::new(dx, dy, dz);
Self::traverse_recursive(child, child_center, new_size, depth + 1, out, octree);
}
}
}
/// Retrieve a voxel from the octree if it exists (x,y,z in [-0.5..+0.5] range).
pub fn get_voxel_at(&self, x: f32, y: f32, z: f32) -> Option<&Voxel> {
Self::get_voxel_recursive(&self.root, x, y, z)
}
fn get_voxel_recursive(node: &OctreeNode, x: f32, y: f32, z: f32) -> Option<&Voxel> {
if node.is_leaf {
return node.voxel.as_ref();
}
if let Some(children) = &node.children {
let epsilon = 1e-6;
let index = ((x >= 0.5 - epsilon) as usize)
+ ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
Self::get_voxel_recursive(
&children[index],
adjust_coord(x),
adjust_coord(y),
adjust_coord(z),
)
} else {
None
}
}
/// Checks if there is a neighbor voxel at the specified direction from the given world coordinates at the specified depth.
/// The offsets are directions (-1, 0, 1) for x, y, z.
pub fn has_neighbor(
&self,
position: Vec3,
offset_x: i32,
offset_y: i32,
offset_z: i32,
depth: u32,
) -> bool {
let aligned = self.normalize_to_voxel_at_depth(position, depth);
let voxel_count = 2_u32.pow(depth) as f32;
// Normalized voxel size is 1/voxel_count
let norm_voxel_size = 1.0 / voxel_count;
let neighbor = Vec3::new(
aligned.x + (offset_x as f32) * norm_voxel_size,
aligned.y + (offset_y as f32) * norm_voxel_size,
aligned.z + (offset_z as f32) * norm_voxel_size,
);
// Convert the normalized neighbor coordinate back to world space
let half_size = self.size * 0.5;
let neighbor_world = neighbor * self.size - Vec3::splat(half_size);
if !self.contains(neighbor_world.x, neighbor_world.y, neighbor_world.z) {
return false;
}
self.get_voxel_at_world_coords(neighbor_world).is_some()
}
/// Performs a raycast against the octree and returns the first intersected voxel.
pub fn raycast(&self, ray: &Ray) -> Option<(f32, f32, f32, u32, Vec3)> {
// Start from the root node
let half_size = self.size / 2.0;
let root_bounds = AABB {
min: Vec3::new(-half_size as f32, -half_size as f32, -half_size as f32),
max: Vec3::new(half_size as f32, half_size as f32, half_size as f32),
};
self.raycast_recursive(
&self.root,
ray,
&root_bounds,
0,
)
}
fn raycast_recursive(
&self,
node: &OctreeNode,
ray: &Ray,
bounds: &AABB,
depth: u32,
) -> Option<(f32, f32, f32, u32, Vec3)> {
// Check if the ray intersects this node's bounding box
if let Some((t_enter, _, normal)) = self.ray_intersects_aabb_with_normal(ray, bounds) {
// If this is a leaf node and contains a voxel, return it
if node.is_leaf && node.voxel.is_some() {
// Compute the exact hit position
let hit_position = ray.origin + ray.direction * t_enter;
// Return the hit position along with depth and normal
return Some((
hit_position.x as f32,
hit_position.y as f32,
hit_position.z as f32,
depth,
normal,
));
}
// If the node has children, traverse them
if let Some(ref children) = node.children {
// For each child, compute its bounding box and recurse
let mut hits = Vec::new();
for (i, child) in children.iter().enumerate() {
let child_bounds = self.compute_child_bounds(bounds, i);
if let Some(hit) = self.raycast_recursive(child, ray, &child_bounds, depth + 1) {
hits.push(hit);
}
}
// Return the closest hit, if any
if !hits.is_empty() {
hits.sort_by(|a, b| {
let dist_a = ((a.0 as f32 - ray.origin.x).powi(2)
+ (a.1 as f32 - ray.origin.y).powi(2)
+ (a.2 as f32 - ray.origin.z).powi(2))
.sqrt();
let dist_b = ((b.0 as f32 - ray.origin.x).powi(2)
+ (b.1 as f32 - ray.origin.y).powi(2)
+ (b.2 as f32 - ray.origin.z).powi(2))
.sqrt();
dist_a.partial_cmp(&dist_b).unwrap()
});
return Some(hits[0]);
}
}
}
None
}
}

View File

@ -0,0 +1,52 @@
use bevy::prelude::*;
use crate::plugins::environment::systems::voxels::helper::world_to_chunk;
use crate::plugins::environment::systems::voxels::structure::*;
/// enqueue chunks that *should* be visible but are not yet spawned
/// enqueue chunks that *should* be visible but are not yet spawned
pub fn enqueue_visible_chunks(
mut queue : ResMut<ChunkQueue>,
spawned : Res<SpawnedChunks>,
mut prev_cam : ResMut<PrevCameraChunk>,
cfg : Res<ChunkCullingCfg>,
cam_q : Query<&GlobalTransform, With<Camera>>,
tree_q : Query<&SparseVoxelOctree>,
) {
let tree = tree_q.single();
let cam_pos = cam_q.single().translation();
let centre = world_to_chunk(tree, cam_pos);
if prev_cam.0 == Some(centre) {
return;
}
prev_cam.0 = Some(centre);
let r = cfg.view_distance_chunks;
for key in &tree.occupied_chunks {
let dx = key.0 - centre.0;
let dy = key.1 - centre.1;
let dz = key.2 - centre.2;
if dx.abs() > r || dy.abs() > r || dz.abs() > r { continue; }
if spawned.0.contains_key(key) { continue; }
if queue.set.contains(key) { continue; }
queue.keys.push_back(*key);
queue.set.insert(*key);
}
}
/// move a limited number of keys from the queue into the octrees dirty set
pub fn process_chunk_queue(
mut queue : ResMut<ChunkQueue>,
budget : Res<ChunkBudget>,
mut tree_q : Query<&mut SparseVoxelOctree>,
) {
let mut tree = tree_q.single_mut();
for _ in 0..budget.per_frame {
if let Some(key) = queue.keys.pop_front() {
queue.set.remove(&key);
tree.dirty_chunks.insert(key);
} else { break; }
}
}

View File

@ -0,0 +1,125 @@
use std::collections::HashMap;
use std::fmt::format;
use bevy::pbr::wireframe::Wireframe;
use bevy::prelude::*;
use bevy::render::mesh::Mesh;
use big_space::prelude::GridCell;
use itertools::Itertools;
use crate::plugins::big_space::big_space_plugin::RootGrid;
use crate::plugins::environment::systems::voxels::meshing::mesh_chunk;
use crate::plugins::environment::systems::voxels::structure::*;
/// rebuilds meshes only for chunks flagged dirty by the octree
pub fn rebuild_dirty_chunks(
mut commands : Commands,
mut octrees : Query<&mut SparseVoxelOctree>,
mut meshes : ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
chunk_q : Query<(Entity,
&Chunk,
&Mesh3d,
&MeshMaterial3d<StandardMaterial>,
&ChunkLod)>,
mut spawned : ResMut<SpawnedChunks>,
root : Res<RootGrid>,
) {
// map ChunkKey → (entity, mesh-handle, material-handle)
let existing: HashMap<ChunkKey, (Entity, Handle<Mesh>, Handle<StandardMaterial>, u32)> =
chunk_q
.iter()
.map(|(e, c, m, mat, lod)| (c.key, (e, m.0.clone(), mat.0.clone(), lod.0)))
.collect();
for mut tree in &mut octrees {
if tree.dirty_chunks.is_empty() {
continue;
}
//------------------------------------------------ collect voxel data
let mut bufs = Vec::new();
for key in tree.dirty_chunks.iter().copied() {
let lod = existing.get(&key).map(|v| v.3).unwrap_or(0);
let mut buf =
[[[None; CHUNK_SIZE as usize]; CHUNK_SIZE as usize]; CHUNK_SIZE as usize];
let half = tree.size * 0.5;
let step = tree.get_spacing_at_depth(tree.max_depth);
let origin = Vec3::new(
key.0 as f32 * CHUNK_SIZE as f32 * step - half,
key.1 as f32 * CHUNK_SIZE as f32 * step - half,
key.2 as f32 * CHUNK_SIZE as f32 * step - half,
);
let mult = 1 << lod;
for gx in (0..CHUNK_SIZE).step_by(mult as usize) {
for gy in (0..CHUNK_SIZE).step_by(mult as usize) {
for gz in (0..CHUNK_SIZE).step_by(mult as usize) {
let center = origin
+ Vec3::new(
(gx + mult / 2) as f32 * step,
(gy + mult / 2) as f32 * step,
(gz + mult / 2) as f32 * step,
);
if let Some(v) = tree.get_voxel_at_world_coords(center) {
for lx in 0..mult {
for ly in 0..mult {
for lz in 0..mult {
let ix = gx + lx;
let iy = gy + ly;
let iz = gz + lz;
if ix < CHUNK_SIZE && iy < CHUNK_SIZE && iz < CHUNK_SIZE {
buf[ix as usize][iy as usize][iz as usize] = Some(*v);
}
}
}
}
}
}
}
}
bufs.push((key, buf, origin, step, lod));
}
//------------------------------------------------ create / update
for (key, buf, origin, step, lod) in bufs {
if let Some((ent, mesh_h, _mat_h, _)) = existing.get(&key).cloned() {
// update mesh in-place; keeps old asset id
match mesh_chunk(&buf, origin, step, &tree) {
Some(new_mesh) => {
if let Some(mesh) = meshes.get_mut(&mesh_h) {
*mesh = new_mesh;
}
spawned.0.insert(key, ent);
}
None => {
meshes.remove(&mesh_h);
commands.entity(ent).despawn_recursive();
spawned.0.remove(&key);
}
}
} else if let Some(mesh) = mesh_chunk(&buf, origin, step, &tree) {
// spawn brand-new chunk only if mesh has faces
let mesh_h = meshes.add(mesh);
let mat_h = materials.add(StandardMaterial::default());
commands.entity(root.0).with_children(|p| {
let e = p
.spawn((
Mesh3d::from(mesh_h.clone()),
MeshMaterial3d(mat_h.clone()),
Transform::default(),
GridCell::<i64>::ZERO,
Chunk { key, voxels: Vec::new(), dirty: false },
ChunkLod(lod),
/*Wireframe,*/
))
.id();
spawned.0.insert(key, e);
});
}
}
tree.clear_dirty_flags();
}
}

View File

@ -0,0 +1,154 @@
use std::collections::{HashMap, HashSet, VecDeque};
use bevy::color::Color;
use bevy::prelude::*;
/// Represents a single voxel with a color.
#[derive(Debug, Clone, Copy, Component, PartialEq, Default)]
pub struct Voxel {
pub color: Color,
}
#[derive(Debug, Clone, Copy)]
pub struct DirtyVoxel {
pub position: Vec3,
}
/// Represents a node in the sparse voxel octree.
#[derive(Debug, Component, Clone)]
pub struct OctreeNode {
pub children: Option<Box<[OctreeNode; 8]>>,
pub voxel: Option<Voxel>,
pub is_leaf: bool,
}
/// Represents the root of the sparse voxel octree.
/// Represents the root of the sparse voxel octree.
#[derive(Debug, Component)]
pub struct SparseVoxelOctree {
pub root: OctreeNode,
pub max_depth: u32,
pub size: f32,
pub show_wireframe: bool,
pub show_world_grid: bool,
pub show_chunks: bool,
pub dirty: Vec<DirtyVoxel>,
pub dirty_chunks: HashSet<ChunkKey>,
pub occupied_chunks: HashSet<ChunkKey>,
}
impl OctreeNode {
/// Creates a new empty octree node.
pub fn new() -> Self {
Self {
children: None,
voxel: None,
is_leaf: true,
}
}
pub fn is_empty(&self) -> bool {
self.voxel.is_none() && self.children.is_none()
}
}
impl Voxel {
/// Creates a new empty octree node.
pub fn new(color: Color) -> Self {
Self {
color,
}
}
}
pub const NEIGHBOR_OFFSETS: [(f32, f32, f32); 6] = [
(-1.0, 0.0, 0.0), // Left
(1.0, 0.0, 0.0), // Right
(0.0, -1.0, 0.0), // Down
(0.0, 1.0, 0.0), // Up
(0.0, 0.0, -1.0), // Back
(0.0, 0.0, 1.0), // Front
];
#[derive(Debug)]
pub struct Ray {
pub origin: Vec3,
pub direction: Vec3,
}
#[derive(Clone)]
pub struct AABB {
pub min: Vec3,
pub max: Vec3,
}
pub const CHUNK_SIZE: i32 = 16; // 16×16×16 voxels
pub const CHUNK_POW : u32 = 4;
#[derive(Component)]
pub struct Chunk {
pub key: ChunkKey,
pub voxels: Vec<(IVec3, Voxel)>, // local coords 0‥15
pub dirty: bool,
}
#[derive(Component, Debug, Clone, Copy)]
pub struct ChunkLod(pub u32);
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
pub struct ChunkKey(pub i32, pub i32, pub i32);
/// maximum amount of *new* chunk meshes we are willing to create each frame
#[derive(Resource)]
pub struct ChunkBudget {
pub per_frame: usize,
}
impl Default for ChunkBudget {
fn default() -> Self {
Self { per_frame: 4 } // tweak to taste
}
}
/// FIFO queue with chunk keys that still need meshing
#[derive(Resource, Default)]
pub struct ChunkQueue {
pub keys: VecDeque<ChunkKey>,
pub set: HashSet<ChunkKey>,
}
/// map “which chunk key already has an entity in the world?”
#[derive(Resource, Default)]
pub struct SpawnedChunks(pub HashMap<ChunkKey, Entity>);
/// how big the cube around the player is, measured in chunks
#[derive(Resource)]
pub struct ChunkCullingCfg { pub view_distance_chunks: i32 }
impl Default for ChunkCullingCfg { fn default() -> Self { Self { view_distance_chunks: 6 } } }
#[derive(Resource, Default)]
pub struct PrevCameraChunk(pub Option<ChunkKey>);
#[derive(Resource, Clone)]
pub struct ChunkOffsets(pub Vec<IVec3>);
impl ChunkOffsets {
pub fn new(radius: i32) -> Self {
let mut offsets = Vec::new();
for dx in -radius..=radius {
for dy in -radius..=radius {
for dz in -radius..=radius {
offsets.push(IVec3::new(dx, dy, dz));
}
}
}
offsets.sort_by_key(|v| v.x * v.x + v.y * v.y + v.z * v.z);
Self(offsets)
}
}

View File

@ -1,7 +1,6 @@
use bevy::app::{App, Plugin, PreUpdate, Startup};
use bevy::prelude::{IntoSystemConfigs, Update};
use crate::plugins::input::systems::console::{console_system, toggle_console, ConsoleState};
pub struct InputPlugin;
impl Plugin for InputPlugin {
@ -9,17 +8,14 @@ impl Plugin for InputPlugin {
_app.add_systems(
Update,
(
crate::plugins::input::systems::console::console_system,
crate::plugins::input::systems::flight::flight_systems,
crate::plugins::input::systems::ui::ui_system,
//crate::plugins::input::systems::network::network_system,
crate::plugins::input::systems::movement::movement_system,
crate::plugins::input::systems::voxels::voxel_system
),
);
_app.insert_resource(ConsoleState::default());
_app.add_systems(Update, (toggle_console, console_system));
}
}

View File

@ -1,63 +0,0 @@
use bevy::app::AppExit;
use bevy::input::ButtonInput;
use bevy::input::mouse::{MouseMotion, MouseWheel};
use bevy::prelude::{EventReader, EventWriter, KeyCode, Query, Res, ResMut, Resource, Time, Transform};
use bevy_egui::{egui, EguiContexts};
use bevy_window::Window;
use crate::plugins::environment::systems::camera_system::CameraController;
use crate::plugins::network::systems::database::DbConnectionResource;
pub fn console_system(
mut ctxs: EguiContexts,
mut state: ResMut<ConsoleState>,
) {
if !state.open { return; }
egui::Window::new("Console")
.resizable(true)
.vscroll(true)
.show(ctxs.ctx_mut(), |ui| {
// Output
for line in &state.output {
ui.label(line);
}
// Input line
let resp = ui.text_edit_singleline(&mut state.input);
if resp.lost_focus() && ui.input(|i| i.key_pressed(egui::Key::Enter)) {
let cmd = state.input.trim().to_string();
if !cmd.is_empty() {
state.history.push(cmd.clone());
handle_command(&cmd, &mut state.output);
state.input.clear();
}
}
});
}
/// Press ` to open / close
pub fn toggle_console(
mut state: ResMut<ConsoleState>,
keys: Res<ButtonInput<KeyCode>>,
) {
if keys.just_pressed(KeyCode::KeyC) {
state.open = !state.open;
}
}
/// Add your own commands here.
/// For demo purposes we just echo the input.
fn handle_command(cmd: &str, out: &mut Vec<String>) {
match cmd.trim() {
"help" => out.push("Available: help, clear, echo …".into()),
"clear" => out.clear(),
_ => out.push(format!("> {cmd}")),
}
}
#[derive(Resource, Default)]
pub struct ConsoleState {
pub open: bool,
pub input: String,
pub history: Vec<String>,
pub output: Vec<String>,
}

View File

@ -2,111 +2,85 @@ use bevy::app::AppExit;
use bevy::input::ButtonInput;
use bevy::input::mouse::{MouseMotion, MouseWheel};
use bevy::math::{Quat, Vec3};
use bevy::prelude::{EventReader, EventWriter, KeyCode, Query, Res, ResMut, Time, Transform};
use bevy_window::{CursorGrabMode, Window};
use random_word::Lang;
use spacetimedb_sdk::DbContext;
use crate::module_bindings::{set_name, set_position, spawn_entity, DbTransform, DbVector3, DbVector4, PlayerTableAccess};
use bevy::prelude::*;
use crate::plugins::environment::systems::camera_system::CameraController;
use crate::plugins::network::systems::database::DbConnectionResource;
fn move_by(
mut q: Query<&mut Transform, With<CameraController>>,
delta: Vec3,
) {
for mut t in &mut q {
t.translation += delta;
}
}
/// Example system to input a camera using double-precision for position.
pub fn flight_systems(
time: Res<Time>,
keyboard_input: Res<ButtonInput<KeyCode>>, /*
mouse_button_input: Res<ButtonInput<MouseButton>>,*/
mut mouse_motion_events: EventReader<MouseMotion>,
mut mouse_wheel_events: EventReader<MouseWheel>,
keyboard: Res<ButtonInput<KeyCode>>,
mut mouse_motion: EventReader<MouseMotion>,
mut mouse_wheel: EventReader<MouseWheel>,
mut windows: Query<&mut Window>,
mut query: Query<(&mut Transform, &mut CameraController)>,
mut app_exit_events: EventWriter<AppExit>,
//mut ctx: ResMut<DbConnectionResource>,
// all camera entities carry this tag
mut xforms: Query<&mut Transform, With<CameraController>>,
mut ctrls: Query<&mut CameraController>,
mut exit_ev: EventWriter<AppExit>,
) {
//------------------------------------------------------------
// 0) Early-out if no camera
//------------------------------------------------------------
if xforms.is_empty() { return; }
//------------------------------------------------------------
// 1) Rotation & speed input (borrow transform/controller)
//------------------------------------------------------------
let delta_vec3 = {
let mut window = windows.single_mut();
let (mut transform, mut controller) = query.single_mut();
let mut transform = xforms.single_mut();
let mut controller = ctrls.single_mut();
// ====================
// 1) Handle Mouse Look
// ====================
//------------------ mouse look --------------------------
if !window.cursor_options.visible {
for event in mouse_motion_events.read() {
// Adjust yaw/pitch in f32
controller.yaw -= event.delta.x * controller.sensitivity;
controller.pitch += event.delta.y * controller.sensitivity;
for ev in mouse_motion.read() {
controller.yaw -= ev.delta.x * controller.sensitivity;
controller.pitch += ev.delta.y * controller.sensitivity;
controller.pitch = controller.pitch.clamp(-89.9, 89.9);
// Convert degrees to radians (f32)
let yaw_radians = controller.yaw.to_radians();
let pitch_radians = controller.pitch.to_radians();
let yaw = controller.yaw.to_radians();
let pitch = controller.pitch.to_radians();
// Build a double-precision quaternion from those angles
let rot_yaw = Quat::from_axis_angle(Vec3::Y, yaw_radians);
let rot_pitch = Quat::from_axis_angle(Vec3::X, -pitch_radians);
transform.rotation = rot_yaw * rot_pitch;
let rot = Quat::from_rotation_y(yaw) * Quat::from_rotation_x(-pitch);
transform.rotation = rot;
}
}
// ====================
// 2) Adjust Movement Speed with Mouse Wheel
// ====================
for event in mouse_wheel_events.read() {
let base_factor = 1.1_f32;
let factor = base_factor.powf(event.y);
controller.speed *= factor;
if controller.speed < 0.01 {
controller.speed = 0.01;
}
//------------------ mouse wheel speed -------------------
for ev in mouse_wheel.read() {
controller.speed = (controller.speed * 1.1_f32.powf(ev.y)).max(0.01);
}
//------------------ keyboard direction -----------------
let mut dir = Vec3::ZERO;
if keyboard.pressed(KeyCode::KeyW) { dir += *transform.forward(); }
if keyboard.pressed(KeyCode::KeyS) { dir -= *transform.forward(); }
if keyboard.pressed(KeyCode::KeyA) { dir -= *transform.right(); }
if keyboard.pressed(KeyCode::KeyD) { dir += *transform.right(); }
if keyboard.pressed(KeyCode::Space) { dir += *transform.up(); }
if keyboard.pressed(KeyCode::ShiftLeft) ||
keyboard.pressed(KeyCode::ShiftRight) { dir -= *transform.up(); }
// ====================
// 3) Handle Keyboard Movement (WASD, Space, Shift)
// ====================
let mut direction = Vec3::ZERO;
// Forward/Back
if keyboard_input.pressed(KeyCode::KeyW) {
direction += transform.forward().as_vec3();
}
if keyboard_input.pressed(KeyCode::KeyS) {
direction -= transform.forward().as_vec3();
}
// Left/Right
if keyboard_input.pressed(KeyCode::KeyA) {
direction -= transform.right().as_vec3();
}
if keyboard_input.pressed(KeyCode::KeyD) {
direction += transform.right().as_vec3();
}
// Up/Down
if keyboard_input.pressed(KeyCode::Space) {
direction += transform.up().as_vec3();
}
if keyboard_input.pressed(KeyCode::ShiftLeft) || keyboard_input.pressed(KeyCode::ShiftRight) {
direction -= transform.up().as_vec3();
}
// Normalize direction if needed
if direction.length_squared() > 0.0 {
direction = direction.normalize();
}
// Apply movement in double-precision
let delta_seconds = time.delta_secs_f64();
let distance = controller.speed as f64 * delta_seconds;
transform.translation += direction * distance as f32;
/*ctx.0.reducers.set_position(DbVector3{
x: transform.translation.x,
y: transform.translation.y,
z: transform.translation.z,
}).expect("TODO: panic message");
*/
if dir.length_squared() > 0.0 { dir = dir.normalize(); }
//------------------ compute delta ----------------------
let distance = controller.speed * time.delta_secs_f64() as f32;
dir * distance
}; // ⬅ scopes end here; mutable borrows are dropped
//------------------------------------------------------------
// 2) Apply translation with the helper
//------------------------------------------------------------
move_by(xforms, delta_vec3);
}

View File

@ -1,5 +1,4 @@
pub mod movement;
pub mod flight;
pub mod console;
pub mod ui;
pub mod network;
pub mod voxels;

View File

@ -1,51 +0,0 @@
use bevy::input::ButtonInput;
use bevy::math::{EulerRot, Quat};
use bevy::prelude::{KeyCode, Res, ResMut,};
use random_word::Lang;
use crate::module_bindings::{set_name, spawn_entity, spawn_rigidbody_entity, DbTransform, DbVector3, DbVector4, EntityType};
use crate::plugins::network::systems::database::DbConnectionResource;
pub fn network_system(
keyboard_input: Res<ButtonInput<KeyCode>>,
ctx: ResMut<DbConnectionResource>,
) {
if keyboard_input.just_pressed(KeyCode::KeyQ) {
let word = random_word::get(Lang::En);
ctx.0.reducers.set_name(word.to_string()).unwrap();
}
if keyboard_input.just_pressed(KeyCode::KeyE) {
let rand_position = crate::helper::vector_helper::random_vec3(-10.0, 10.0);
let rand_rotation = crate::helper::vector_helper::random_vec3(0.0, 10.0);
let rand_rotation = Quat::from_euler(EulerRot::XYZ,rand_rotation.x,rand_rotation.y,rand_rotation.z).normalize();
let rand_scale = crate::helper::vector_helper::random_vec3(0.1, 1.0);
ctx.0.reducers.spawn_rigidbody_entity(DbTransform{
position: DbVector3{
x: rand_position.x,
y: rand_position.y,
z: rand_position.z,
},
rotation: DbVector4 {
x: rand_rotation.x,
y: rand_rotation.y,
z: rand_rotation.z,
w: rand_rotation.w,
},
scale: DbVector3 {
x: rand_scale.x,
y: rand_scale.x,
z: rand_scale.x,
},
},
EntityType::Cube,
DbVector3{ x:0.0, y:0.0, z:0.0}, 5.0, false).unwrap();
}
}

View File

@ -1,7 +1,7 @@
use bevy::app::AppExit;
use bevy::input::ButtonInput;
use bevy::prelude::{EventWriter, KeyCode, Query, Res,};
use bevy_window::{CursorGrabMode, Window};
use bevy::prelude::*;
use bevy::window::CursorGrabMode;
pub fn ui_system(
keyboard_input: Res<ButtonInput<KeyCode>>,

View File

@ -0,0 +1,99 @@
use bevy::prelude::*;
use crate::plugins::environment::systems::camera_system::CameraController;
use crate::plugins::environment::systems::voxels::structure::*;
///TODO
pub fn voxel_system(
keyboard_input: Res<ButtonInput<KeyCode>>,
mouse_button_input: Res<ButtonInput<MouseButton>>,
mut octree_query: Query<&mut SparseVoxelOctree>,
mut query: Query<(&mut Transform, &mut CameraController)>,
mut windows: Query<&mut Window>,
) {
let mut window = windows.single_mut();
let (mut transform, _) = query.single_mut();
// =======================
// 5) Octree Keys
// =======================
if keyboard_input.just_pressed(KeyCode::F2){
for mut octree in octree_query.iter_mut() {
octree.show_wireframe = !octree.show_wireframe;
}
}
if keyboard_input.just_pressed(KeyCode::F3){
for mut octree in octree_query.iter_mut() {
octree.show_world_grid = !octree.show_world_grid;
}
}
if keyboard_input.just_pressed(KeyCode::F4){
for mut octree in octree_query.iter_mut() {
octree.show_chunks = !octree.show_chunks;
}
}
if keyboard_input.just_pressed(KeyCode::KeyQ) && window.cursor_options.visible == false{
for mut octree in octree_query.iter_mut() {
octree.insert(transform.translation, Voxel::new(Color::srgb(1.0, 0.0, 0.0)));
}
}
// =======================
// 6) Building
// =======================
if (mouse_button_input.just_pressed(MouseButton::Left) || mouse_button_input.just_pressed(MouseButton::Right)) && !window.cursor_options.visible {
// Get the mouse position in normalized device coordinates (-1 to 1)
if let Some(_) = window.cursor_position() {
// Set the ray direction to the camera's forward vector
let ray_origin = transform.translation;
let ray_direction = transform.forward().normalize();
let ray = Ray {
origin: ray_origin,
direction: ray_direction,
};
for mut octree in octree_query.iter_mut() {
if let Some((hit_x, hit_y, hit_z, depth,normal)) = octree.raycast(&ray) {
if mouse_button_input.just_pressed(MouseButton::Right) {
let voxel_size = octree.get_spacing_at_depth(depth);
let hit_position = Vec3::new(hit_x as f32, hit_y as f32, hit_z as f32);
let epsilon = voxel_size * 0.1; // Adjust this value as needed (e.g., 0.1 times the voxel size)
// Offset position by epsilon in the direction of the normal
let offset_position = hit_position - (normal * Vec3::new(epsilon as f32, epsilon as f32, epsilon as f32));
// Remove the voxel
octree.remove(offset_position);
}
else if mouse_button_input.just_pressed(MouseButton::Left) {
let voxel_size = octree.get_spacing_at_depth(depth);
let hit_position = Vec3::new(hit_x as f32, hit_y as f32, hit_z as f32);
let epsilon = voxel_size * 0.1; // Adjust this value as needed (e.g., 0.1 times the voxel size)
// Offset position by epsilon in the direction of the normal
let offset_position = hit_position + (normal * Vec3::new(epsilon as f32, epsilon as f32, epsilon as f32));
// Insert the new voxel
octree.insert(
offset_position,
Voxel::new(Color::srgb(1.0, 0.0, 0.0)),
);
}
}
}
}
}
}

View File

@ -1,5 +1,5 @@
pub mod environment;
pub mod ui;
pub mod network;
pub mod input;
pub(crate) mod big_space;

View File

@ -1,2 +0,0 @@
pub(crate) mod systems;
pub mod network_plugin;

View File

@ -1,15 +0,0 @@
use bevy::app::{App, Plugin, Startup};
use bevy::color::palettes::basic::{GREEN, YELLOW};
use bevy::color::palettes::css::RED;
use bevy::prelude::*;
use crate::plugins::environment::systems::environment_system::*;
use crate::plugins::network::systems::database::setup_database;
use crate::plugins::network::systems::entities::*;
pub struct NetworkPlugin;
impl Plugin for NetworkPlugin {
fn build(&self, app: &mut App) {
app.add_systems(PreStartup, setup_database);
app.add_systems(PostUpdate, sync_entities_system);
}
}

View File

@ -1,50 +0,0 @@
use bevy::log::{error, info};
use spacetimedb_sdk::Status;
use crate::module_bindings::{EventContext, Player, ReducerEventContext, RemoteDbContext};
/// Our `User::on_insert` callback:
/// if the user is online, print a notification.
pub fn on_user_inserted(_ctx: &EventContext, user: &Player) {
if user.online {
info!("User {} connected.", user_name_or_identity(user));
}
}
pub fn user_name_or_identity(user: &Player) -> String {
user.name
.clone()
.unwrap_or_else(|| user.identity.to_hex().to_string())
}
/// Our `User::on_update` callback:
/// print a notification about name and status changes.
pub fn on_user_updated(_ctx: &EventContext, old: &Player, new: &Player) {
if old.name != new.name {
info!(
"User {} renamed to {}.",
user_name_or_identity(old),
user_name_or_identity(new)
);
}
if old.online && !new.online {
info!("User {} disconnected.", user_name_or_identity(new));
}
if !old.online && new.online {
info!("User {} connected.", user_name_or_identity(new));
}
}
/// Our `on_set_name` callback: print a warning if the reducer failed.
pub fn on_name_set(ctx: &ReducerEventContext, name: &String) {
if let Status::Failed(err) = &ctx.event.status {
error!("Failed to change name to {:?}: {}", name, err);
}
}
/// Our `on_send_message` callback: print a warning if the reducer failed.
pub fn on_message_sent(ctx: &ReducerEventContext, text: &String) {
if let Status::Failed(err) = &ctx.event.status {
error!("Failed to send message {:?}: {}", text, err);
}
}

View File

@ -1,32 +0,0 @@
use spacetimedb_sdk::{credentials, Error, Identity};
use crate::module_bindings::{DbConnection, ErrorContext};
pub fn creds_store() -> credentials::File {
credentials::File::new("token")
}
/// Our `on_connect` callback: save our credentials to a file.
pub fn on_connected(_ctx: &DbConnection, _identity: Identity, token: &str) {
if let Err(e) = creds_store().save(token) {
eprintln!("Failed to save credentials: {:?}", e);
}
}
/// Our `on_connect_error` callback: print the error, then exit the process.
pub fn on_connect_error(_ctx: &ErrorContext, err: Error) {
eprintln!("Connection error: {:?}", err);
std::process::exit(1);
}
/// Our `on_disconnect` callback: print a note, then exit the process.
pub fn on_disconnected(_ctx: &ErrorContext, err: Option<Error>) {
if let Some(err) = err {
eprintln!("Disconnected: {}", err);
std::process::exit(1);
} else {
println!("Disconnected.");
std::process::exit(0);
}
}

View File

@ -1,64 +0,0 @@
use std::fmt::Debug;
use std::ops::Deref;
use bevy::ecs::system::SystemState;
use bevy::prelude::{Commands, DetectChanges, Mut, Res, ResMut, Resource, World};
use bevy::utils::info;
use spacetimedb_sdk::{credentials, DbContext, Error, Event, Identity, Status, Table, TableWithPrimaryKey};
use crate::config::ServerConfig;
use crate::module_bindings::*;
use crate::plugins::network::systems::callbacks::*;
use crate::plugins::network::systems::connection::*;
use crate::plugins::network::systems::subscriptions::*;
#[derive(Resource)]
pub struct DbConnectionResource(pub(crate) DbConnection);
pub fn setup_database(mut commands: Commands, config: Res<crate::Config>) {
// Call your connection function and insert the connection as a resource.
let ctx = connect_to_db(config);
register_callbacks(&ctx);
subscribe_to_tables(&ctx);
ctx.run_threaded();
commands.insert_resource(DbConnectionResource(ctx));
}
/// Register subscriptions for all rows of both tables
fn connect_to_db(config: Res<crate::Config>) -> DbConnection {
println!("It's there: {:?}", &config.server);
DbConnection::builder()
.on_connect(on_connected)
.on_connect_error(on_connect_error)
.on_disconnect( on_disconnected)
.with_module_name(&config.server.database)
.with_uri(&config.server.host)
.build()
.expect("Failed to connect")
}
/// Register all the callbacks our app will use to respond to database events.
fn register_callbacks(ctx: &DbConnection) {
// When a new user joins, print a notification.
ctx.db.player().on_insert(on_user_inserted);
// When a user's status changes, print a notification.
ctx.db.player().on_update(on_user_updated);
// When we fail to set our name, print a warning.
ctx.reducers.on_set_name(on_name_set);
}
fn subscribe_to_tables(ctx: &DbConnection) {
ctx.subscription_builder()
.on_applied(on_sub_applied)
.on_error(on_sub_error)
.subscribe(["SELECT * FROM player", "SELECT * FROM entity", "SELECT * FROM rigidbody"]);
}

View File

@ -1,116 +0,0 @@
use std::collections::HashSet;
use bevy::log::debug;
use bevy::math::{NormedVectorSpace, Vec3};
use bevy::pbr::{MeshMaterial3d, StandardMaterial};
use bevy::prelude::{default, info, Bundle, Commands, Component, Cuboid, DespawnRecursiveExt, DetectChangesMut, Entity, GlobalTransform, Mesh, PbrBundle, Quat, Query, Res, ResMut, Sphere, Transform, TransformBundle};
use bevy_asset::Assets;
use bevy_reflect::Reflect;
use bevy_render::mesh::Mesh3d;
use spacetimedb_sdk::{DbContext, Table};
use crate::helper::math::RoundTo;
use crate::module_bindings::{DbTransform, DbVector3, EntityTableAccess, EntityType, PlayerTableAccess};
use crate::plugins::network::systems::database::DbConnectionResource;
#[derive(Component)]
pub struct EntityDto {
pub entity_id: u32,
pub transform: DbTransform,
}
impl From<crate::module_bindings::Entity> for EntityDto {
fn from(e: crate::module_bindings::Entity) -> Self {
EntityDto {
entity_id: e.entity_id,
transform: e.transform,
}
}
}
// System that syncs DB entities with the Bevy ECS
pub fn sync_entities_system(
mut commands: Commands,
db_resource: Res<DbConnectionResource>,
// We need the Entity handle for potential despawning,
// plus mutable references if we want to update Transform/EntityDto
mut query: Query<(Entity, &mut Transform, &mut GlobalTransform, &mut EntityDto)>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
let identity = db_resource.0.identity();
let player = db_resource.0.db.player().identity().find(&identity);
// --- 1) Collect DB entities and build a set of IDs ---
let db_entities = db_resource.0.db.entity();
let db_ids: HashSet<u32> = db_entities.iter().map(|e| e.entity_id).collect();
// --- 2) For each DB entity, update or spawn in ECS ---
for db_entity in db_entities.iter() {
if db_entity.entity_id == player.clone().unwrap().entity_id {
return;
}
// Try to find a matching ECS entity by entity_id
if let Some((_, mut transform, mut global, mut dto)) =
query.iter_mut().find(|(_, _, _, dto)| dto.entity_id == db_entity.entity_id)
{
// Update fields
// build the new local Transform
let new_tf = Transform::from(db_entity.transform.clone());
// overwrite both components
*transform = new_tf;
*global = GlobalTransform::from(new_tf);
// keep your DTO in sync
dto.transform = db_entity.transform.clone();
} else {
// Not found in ECS, so spawn a new entity
let debug_material = materials.add(StandardMaterial {
// fill out any fields you want
..default()
});
// Pick a mesh based on the entity type
let entity_type = match db_entity.entity_type {
EntityType::Sphere => Mesh3d(meshes.add(Sphere::default())),
EntityType::Cube => Mesh3d(meshes.add(Cuboid::default())),
EntityType::Custom => todo!(),
};
let new_tf = Transform::from(db_entity.transform.clone());
commands.spawn((
TransformBundle::from_transform(new_tf), // inserts BOTH Transform and GlobalTransform
entity_type,
MeshMaterial3d(debug_material),
EntityDto::from(db_entity.clone()),
));
}
}
// --- 3) Despawn any ECS entity that doesn't exist in the DB anymore ---
for (entity,_, _, dto) in query.iter_mut() {
if !db_ids.contains(&dto.entity_id) {
// This ECS entity no longer matches anything in the DB => remove it
commands.entity(entity).despawn_recursive();
}
}
}

View File

@ -1,5 +0,0 @@
pub mod database;
mod connection;
mod callbacks;
mod subscriptions;
pub mod entities;

View File

@ -1,23 +0,0 @@
use bevy::prelude::info;
use spacetimedb_sdk::{Error, Table};
use crate::module_bindings::{ErrorContext, PlayerTableAccess, SubscriptionEventContext};
/// Our `on_subscription_applied` callback:
/// sort all past messages and print them in timestamp order.
pub fn on_sub_applied(ctx: &SubscriptionEventContext) {
let mut players = ctx.db.player().iter().collect::<Vec<_>>();
players.sort_by_key(|p| p.name.clone());
for player in players {
println!("Player {:?} online", player.name);
}
println!("Fully connected and all subscriptions applied.");
println!("Use /name to set your name, or type a message!");
}
/// Or `on_error` callback:
/// print the error, then exit the process.
pub fn on_sub_error(_ctx: &ErrorContext, err: Error) {
eprintln!("Subscription failed: {}", err);
std::process::exit(1);
}

View File

@ -1,7 +1,10 @@
use crate::plugins::environment::systems::camera_system::CameraController;
use bevy::asset::AssetServer;
use bevy::math::DVec3;
use bevy::prelude::*;
use big_space::prelude::*;
#[derive(Component)]
pub struct SpeedDisplay;
@ -38,25 +41,26 @@ pub fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
/// - camera f32 position
/// - camera global f64 position
/// - current chunk coordinate
pub fn update(
// Query the camera controller so we can see its speed
query_camera_controller: Query<&CameraController>,
// We also query for the camera's f32 `Transform` and the double `DoubleTransform`
camera_query: Query<(&Transform, &Camera)>,
// The UI text entity
mut query_text: Query<&mut Text, With<SpeedDisplay>>,
grids: Grids<'_, '_, i64>, // helper from big_space
// we need the entity id, the cell & the local transform
camera_q: Query<(Entity, &GridCell<i64>, &Transform, &CameraController)>,
mut ui_q: Query<&mut Text, With<SpeedDisplay>>,
) {
let camera_controller = query_camera_controller.single();
let (transform, _camera) = camera_query.single();
let mut text = query_text.single_mut();
let Ok((cam_ent, cell, tf, ctrl)) = camera_q.get_single() else { return };
// Format the string to show speed, positions, and chunk coords
// grid that the camera lives in
let Some(grid) = grids.parent_grid(cam_ent) else { return };
// absolute position in metres (f64)
let pos = grid.grid_position_double(cell,tf);
if let Ok(mut text) = ui_q.get_single_mut() {
text.0 = format!(
"\n Speed: {:.3}\n Position(f32): ({:.2},{:.2},{:.2})",
camera_controller.speed,
transform.translation.x,
transform.translation.y,
transform.translation.z,
"\n Speed: {:.3}\n Position(f64): ({:.2}, {:.2}, {:.2})",
ctrl.speed,
pos.x, pos.y, pos.z,
);
}
}

View File

@ -1,13 +0,0 @@
[package]
name = "spacetime-module"
version = "0.1.0"
edition = "2024"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[lib]
crate-type = ["cdylib"]
[dependencies]
spacetimedb = "1.0.1"
log = "0.4"

View File

@ -1,103 +0,0 @@
mod types;
use std::time::Duration;
use spacetimedb::{reducer, ReducerContext, ScheduleAt, Table, TimeDuration, Timestamp};
use crate::types::entity::{entity, entity__TableHandle, Entity, EntityType};
use crate::types::player::{player, player__TableHandle, Player};
use crate::types::rigidbody::physics_step;
use crate::types::types::{DBVector4, DbTransform, DbVector3};
#[spacetimedb::table(name = config, public)]
pub struct Config {
#[primary_key]
pub id: u32,
}
#[spacetimedb::reducer]
pub fn test(ctx: &ReducerContext) -> Result<(), String> {
log::debug!("This reducer was called by {}.", ctx.sender);
Ok(())
}
#[reducer(client_connected)]
// Called when a client connects to the SpacetimeDB
pub fn client_connected(ctx: &ReducerContext) {
if let Some(player) = ctx.db.player().identity().find(ctx.sender) {
// If this is a returning player, i.e. we already have a `player` with this `Identity`,
// set `online: true`, but leave `name` and `identity` unchanged.
ctx.db.player().identity().update(Player { online: true, ..player });
} else {
// If this is a new player, create a `player` row for the `Identity`,
// which is online, but hasn't set a name.
let entity = ctx.db.entity().try_insert(Entity{
entity_id: 0,
transform: DbTransform{
position: DbVector3{x: 0.0, y: 0.0, z: 10.0},
rotation: DBVector4{x: 0.0, y: 0.0, z: 0.0, w: 1.0},
scale: DbVector3{x: 1.0, y: 1.0, z: 1.0},
},
entity_type: EntityType::Sphere,
}).expect("TODO: panic message");
ctx.db.player().insert(Player {
name: None,
identity: ctx.sender,
online: true,
entity_id: entity.entity_id,
});
}
}
#[reducer(client_disconnected)]
// Called when a client disconnects from SpacetimeDB
pub fn identity_disconnected(ctx: &ReducerContext) {
let entity: &entity__TableHandle = ctx.db.entity();
if let Some(player_iter) = ctx.db.player().identity().find(ctx.sender) {
ctx.db.player().identity().update(Player { online: false, ..player_iter });
ctx.db.entity().iter().find(|e| e.entity_id == player_iter.entity_id).iter().for_each(|e| {
entity.delete(e.clone());
})
} else {
// This branch should be unreachable,
// as it doesn't make sense for a client to disconnect without connecting first.
log::warn!("Disconnect event for unknown Player with identity {:?}", ctx.sender);
}
}
#[spacetimedb::reducer(init)]
pub fn init(ctx: &ReducerContext) -> Result<(), String> {
log::info!("Initializing...");
ctx.db.config().try_insert(Config {
id: 0,
})?;
ctx.db.physics_timer().try_insert(PhysicsTimer {
scheduled_id: 0,
scheduled_at: ScheduleAt::Interval(Duration::from_millis(50).into()),
last_update_ts: ctx.timestamp,
})?;
Ok(())
}
#[spacetimedb::table(name = physics_timer, scheduled(physics_step))]
struct PhysicsTimer {
#[primary_key]
#[auto_inc]
scheduled_id: u64,
scheduled_at: ScheduleAt,
last_update_ts: Timestamp,
}

View File

@ -1,37 +0,0 @@
use spacetimedb::{Identity, ReducerContext, SpacetimeType, Table};
use crate::types::types::{DbVector3, DbTransform, DBVector4};
#[spacetimedb::table(name = entity, public)]
#[derive(Debug, Clone, )]
pub struct Entity {
#[auto_inc]
#[primary_key]
pub entity_id: u32,
pub transform: DbTransform,
pub entity_type: EntityType,
}
#[derive(SpacetimeType, Clone, Debug)]
pub enum EntityType {
Cube,
Sphere,
Custom
}
#[spacetimedb::reducer]
pub fn spawn_entity(ctx: &ReducerContext, transform: DbTransform) -> Result<(), String> {
ctx.db.entity().try_insert(Entity {
entity_id: 0,
transform,
entity_type: EntityType::Cube,
}).expect("TODO: panic message");
Ok(())
}

View File

@ -1,4 +0,0 @@
pub mod types;
pub mod player;
pub mod entity;
pub mod rigidbody;

View File

@ -1,56 +0,0 @@
use crate::types::entity::*;
use std::io::empty;
use spacetimedb::{reducer, Identity, ReducerContext, Table};
use crate::types::types::{DbTransform, DbVector3};
#[spacetimedb::table(name = player, public)]
#[derive(Debug, Clone)]
pub struct Player {
#[primary_key]
pub identity: Identity,
#[index(btree)]
pub entity_id: u32,
pub name: Option<String>,
pub online: bool,
}
#[reducer]
/// Clients invoke this reducer to set their user names.
pub fn set_name(ctx: &ReducerContext, name: String) -> Result<(), String> {
let name = validate_name(name)?;
if let Some(user) = ctx.db.player().identity().find(ctx.sender) {
ctx.db.player().identity().update(Player { name: Some(name), ..user });
Ok(())
} else {
Err("Cannot set name for unknown user".to_string())
}
}
#[reducer]
/// Clients invoke this reducer to set their user names.
pub fn set_position(ctx: &ReducerContext, position: DbVector3) -> Result<(), String> {
if let Some(entity) = ctx.db.entity().iter().find(|e| e.entity_id == ctx.db.player().identity().find(ctx.sender).unwrap().entity_id) {
ctx.db.entity().entity_id()
.update(Entity{
transform: DbTransform{
position: position,
..entity.transform
},
..entity
});
}
Ok(())
}
/// Takes a name and checks if it's acceptable as a user's name.
fn validate_name(name: String) -> Result<String, String> {
if name.is_empty() {
Err("Names must not be empty".to_string())
} else {
Ok(name)
}
}

View File

@ -1,103 +0,0 @@
use std::time::Duration;
use spacetimedb::{ReducerContext, Table, TimeDuration, Timestamp};
use crate::{physics_timer, PhysicsTimer};
use crate::types::entity::{entity, Entity, EntityType};
use crate::types::types::{DbTransform, DbVector3};
#[spacetimedb::table(name = rigidbody, public)]
#[derive(Debug, Clone, )]
pub struct Rigidbody {
#[auto_inc]
#[primary_key]
pub rigidbody_id: u32,
#[index(btree)]
pub entity_id: u32,
pub velocity: DbVector3,
pub force: DbVector3,
pub mass: f32,
pub is_fixed: bool,
}
#[spacetimedb::reducer]
pub fn spawn_rigidbody_entity(
ctx: &ReducerContext,
transform: DbTransform,
entity_type: EntityType,
velocity: DbVector3,
mass: f32,
is_fixed: bool,
) -> Result<(), String> {
// 1. insert a new Entity row
let inserted_entity: Entity = ctx
.db
.entity()
.insert(Entity {
entity_id: 0,
transform,
entity_type,
});
// 2. insert its corresponding Rigidbody row
ctx.db
.rigidbody()
.insert(Rigidbody {
rigidbody_id: 0,
entity_id: inserted_entity.entity_id,
velocity,
force: DbVector3::zero(),
mass,
is_fixed,
});
Ok(())
}
#[spacetimedb::reducer]
pub fn physics_step(ctx: &ReducerContext, mut timer: PhysicsTimer) -> Result<(), String> {
let now = ctx.timestamp;
let delta = now
.time_duration_since(timer.last_update_ts)
.unwrap_or(TimeDuration::from(Duration::from_millis(50)));
let dt = delta.to_duration().unwrap().as_secs_f32();
// update timer state
timer.last_update_ts = now;
ctx.db.physics_timer().scheduled_id().update(timer);
// constant gravity
let gravity = DbVector3::new(0.0, -9.81, 0.0);
// process all rigidbodies
let bodies: Vec<Rigidbody> = ctx.db.rigidbody().iter().collect();
for mut rb in bodies {
if rb.is_fixed {
continue;
}
// apply gravity to force
rb.force.add(&gravity.mul_scalar(rb.mass));
// integrate velocity
let inv_mass = 1.0 / rb.mass;
let accel = rb.force.mul_scalar(inv_mass);
rb.velocity.add(&accel.mul_scalar(dt));
// update corresponding entity position
if let Some(mut ent) = ctx.db.entity().iter().find(|e| e.entity_id == rb.entity_id){
ent.transform.position.add(&rb.velocity.mul_scalar(dt));
ctx.db.entity().entity_id().update(ent);
}
// reset force and write back
rb.force = DbVector3::zero();
ctx.db.rigidbody().rigidbody_id().update(rb);
}
Ok(())
}

View File

@ -1,40 +0,0 @@
use spacetimedb::SpacetimeType;
#[derive(SpacetimeType, Clone, Debug)]
pub struct DbVector3 {
pub x: f32,
pub y: f32,
pub z: f32,
}
impl DbVector3 {
pub(crate) fn new(x: f32, y: f32, z: f32) -> DbVector3 {
DbVector3 { x, y, z }
}
pub(crate) fn zero() -> DbVector3 {
DbVector3::new(0.0, 0.0, 0.0)
}
pub(crate) fn add(&mut self, other: &DbVector3) {
self.x += other.x;
self.y += other.y;
self.z += other.z;
}
pub(crate) fn mul_scalar(&self, s: f32) -> DbVector3 {
DbVector3::new(self.x * s, self.y * s, self.z * s)
}
}
#[derive(SpacetimeType, Clone, Debug)]
pub struct DBVector4 {
pub x: f32,
pub y: f32,
pub z: f32,
pub w: f32,
}
#[derive(SpacetimeType, Clone, Debug)]
pub struct DbTransform {
pub position: DbVector3,
pub rotation: DBVector4,
pub scale: DbVector3,
}

33
trim.bat Normal file
View File

@ -0,0 +1,33 @@
@echo off
rem combine_all.bat merge every *.rs and *.toml in this tree
setlocal enabledelayedexpansion
rem Output files
set "OUT_RS=target/combined.rs.out"
set "OUT_TOML=target/combined.toml.out"
if exist "%OUT_RS%" del "%OUT_RS%"
if exist "%OUT_TOML%" del "%OUT_TOML%"
rem -------- merge .rs --------
for /f "delims=" %%F in ('
dir /b /s /o:n *.rs ^| findstr /v /i "\\target\\"
') do (
echo /* --- %%~F --- */>>"%OUT_RS%"
type "%%F" >>"%OUT_RS%"
echo.>>"%OUT_RS%"
)
rem ----- merge .toml -----
for /f "delims=" %%F in ('
dir /b /s /o:n *.toml ^| findstr /v /i "\\target\\"
') do (
rem TOML uses # for comments
echo # --- %%~F --- >>"%OUT_TOML%"
type "%%F" >>"%OUT_TOML%"
echo.>>"%OUT_TOML%"
)
echo Merged .rs files into %OUT_RS%
echo Merged .toml files into %OUT_TOML%
endlocal

View File

@ -1,2 +0,0 @@
watch spacetime logs network-game