remove large transform system

This commit is contained in:
Elias Stepanik 2025-02-19 11:30:33 +01:00
parent 3845538d92
commit 59553ec7e8
16 changed files with 159 additions and 1001 deletions

View File

@ -11,4 +11,6 @@ bevy-inspector-egui = "0.28.0"
bevy_reflect = "0.15.0" bevy_reflect = "0.15.0"
bevy_render = "0.15.0" bevy_render = "0.15.0"
bevy_window = "0.15.0" bevy_window = "0.15.0"
egui_dock = "0.14.0" egui_dock = "0.14.0"
bytemuck = "1.13"
bevy_mod_debugdump = "0.12.1"

View File

@ -1,8 +1,8 @@
use bevy::prelude::*; use bevy::prelude::*;
use bevy_egui::EguiSet; use bevy_egui::EguiSet;
use bevy_render::extract_resource::ExtractResourcePlugin;
use crate::helper::debug_gizmos::debug_gizmos; use crate::helper::debug_gizmos::debug_gizmos;
use crate::helper::egui_dock::{reset_camera_viewport, set_camera_viewport, set_gizmo_mode, show_ui_system, UiState}; use crate::helper::egui_dock::{reset_camera_viewport, set_camera_viewport, set_gizmo_mode, show_ui_system, UiState};
use crate::helper::large_transform::DoubleTransform;
pub struct AppPlugin; pub struct AppPlugin;
@ -26,7 +26,6 @@ impl Plugin for AppPlugin {
app.add_plugins(crate::plugins::ui_plugin::UiPlugin); app.add_plugins(crate::plugins::ui_plugin::UiPlugin);
app.add_plugins(crate::plugins::environment_plugin::EnvironmentPlugin); app.add_plugins(crate::plugins::environment_plugin::EnvironmentPlugin);
app.add_plugins(crate::plugins::large_transform_plugin::LargeTransformPlugin);
@ -50,7 +49,6 @@ impl Plugin for AppPlugin {
app.add_systems(Update, set_gizmo_mode); app.add_systems(Update, set_gizmo_mode);
app.register_type::<Option<Handle<Image>>>(); app.register_type::<Option<Handle<Image>>>();
app.register_type::<AlphaMode>(); app.register_type::<AlphaMode>();
app.register_type::<DoubleTransform>();
} }

View File

@ -1,103 +0,0 @@
use bevy::math::{DQuat, DVec3};
use bevy::prelude::{Commands, Component, GlobalTransform, Query, Reflect, Res, ResMut, Resource, Transform, With, Without};
use bevy_render::prelude::Camera;
#[derive(Resource, Reflect,Default)]
pub struct WorldOffset(pub DVec3);
#[derive(Component, Default,Reflect)]
pub struct DoubleTransform {
pub translation: DVec3,
pub rotation: DQuat,
pub scale: DVec3,
}
impl DoubleTransform {
pub fn new(translation: DVec3, rotation: DQuat, scale: DVec3) -> Self {
Self {
translation,
rotation,
scale,
}
}
/// Returns a unit vector pointing "forward" (negative-Z) based on the rotation
pub fn forward(&self) -> DVec3 {
self.rotation * DVec3::new(0.0, 0.0, -1.0)
}
/// Returns a unit vector pointing "right" (positive-X)
pub fn right(&self) -> DVec3 {
self.rotation * DVec3::new(1.0, 0.0, 0.0)
}
/// Returns a unit vector pointing "up" (positive-Y)
pub fn up(&self) -> DVec3 {
self.rotation * DVec3::new(0.0, 1.0, 0.0)
}
pub fn down(&self) -> DVec3 {
self.rotation * DVec3::new(0.0, -1.0, 0.0)
}
}
pub(crate) fn get_true_world_position(
offset: &WorldOffset,
transform: &DoubleTransform,
) -> DVec3 {
transform.translation + offset.0
}
pub fn setup(mut commands: Commands) {
commands
.spawn((
DoubleTransform {
translation: DVec3::new(100_000.0, 0.0, 0.0),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
// The standard Bevy Transform (will be updated each frame)
Transform::default(),
GlobalTransform::default(),
// Add your mesh/visibility components, etc.
));
}
pub fn update_render_transform_system(
camera_query: Query<&DoubleTransform, With<Camera>>,
mut query: Query<(&DoubleTransform, &mut Transform), Without<Camera>>,
) {
let camera_double_tf = camera_query.single();
// The camera offset in double-precision
let camera_pos = camera_double_tf.translation;
for (double_tf, mut transform) in query.iter_mut() {
// relative position (double precision)
let relative_pos = double_tf.translation - camera_pos;
transform.translation = relative_pos.as_vec3(); // convert f64 -> f32
transform.rotation = double_tf.rotation.as_quat(); // f64 -> f32
transform.scale = double_tf.scale.as_vec3(); // f64 -> f32
}
}
pub fn floating_origin_system(
mut query: Query<&mut DoubleTransform, Without<Camera>>,
mut camera_query: Query<&mut DoubleTransform, With<Camera>>,
mut offset: ResMut<WorldOffset>,
) {
let mut camera_tf = camera_query.single_mut();
let camera_pos = camera_tf.translation;
// If the camera moves any distance, recenter it
if camera_pos.length() > 0.001 {
offset.0 += camera_pos;
// Shift everything so camera ends up back at zero
for mut dtf in query.iter_mut() {
dtf.translation -= camera_pos;
}
camera_tf.translation = DVec3::ZERO;
}
}

View File

@ -1,3 +1,2 @@
pub mod egui_dock; pub mod egui_dock;
pub mod debug_gizmos; pub mod debug_gizmos;
pub mod large_transform;

View File

@ -1,22 +1,19 @@
use std::fs::create_dir;
use bevy::app::{App, Plugin, PreUpdate, Startup}; use bevy::app::{App, Plugin, Startup};
use bevy::color::palettes::css::{GRAY, RED}; use bevy::color::palettes::basic::{GREEN, YELLOW};
use bevy::prelude::{default, Color, Commands, GlobalTransform, IntoSystemConfigs, Query, Res, Update}; use bevy::color::palettes::css::RED;
use bevy_render::prelude::ClearColor; use bevy::prelude::*;
use crate::app::InspectorVisible;
use crate::systems::environment_system::*; use crate::systems::environment_system::*;
use crate::systems::voxels::structure::{ChunkEntities, SparseVoxelOctree, Voxel}; use crate::systems::voxels::structure::{OctreeNode, SparseVoxelOctree};
pub struct EnvironmentPlugin; pub struct EnvironmentPlugin;
impl Plugin for EnvironmentPlugin { impl Plugin for EnvironmentPlugin {
fn build(&self, app: &mut App) { fn build(&self, app: &mut App) {
/*app.insert_resource(ClearColor(Color::from(GRAY)));*/
app.init_resource::<ChunkEntities>();
app.add_systems(Startup, (setup).chain()); app.add_systems(Startup, (setup).chain());
app.add_systems(Update, (crate::systems::voxels::rendering::render,crate::systems::voxels::debug::visualize_octree.run_if(should_visualize_octree), crate::systems::voxels::debug::draw_grid.run_if(should_draw_grid), crate::systems::voxels::debug::debug_draw_chunks_system.run_if(should_visualize_chunks)).chain()); app.add_systems(Update, (crate::systems::voxels::rendering::render,crate::systems::voxels::debug::visualize_octree.run_if(should_visualize_octree), crate::systems::voxels::debug::draw_grid.run_if(should_draw_grid)).chain());
app.register_type::<SparseVoxelOctree>(); app.register_type::<SparseVoxelOctree>();
app.register_type::<ChunkEntities>();
} }
@ -34,4 +31,5 @@ fn should_draw_grid(octree_query: Query<&SparseVoxelOctree>,) -> bool {
fn should_visualize_chunks(octree_query: Query<&SparseVoxelOctree>,) -> bool { fn should_visualize_chunks(octree_query: Query<&SparseVoxelOctree>,) -> bool {
octree_query.single().show_chunks octree_query.single().show_chunks
} }

View File

@ -1,17 +0,0 @@
use bevy::app::{App, Plugin, PreUpdate, Startup, Update};
use bevy::prelude::IntoSystemConfigs;
use crate::helper::large_transform::*;
pub struct LargeTransformPlugin;
impl Plugin for LargeTransformPlugin {
fn build(&self, app: &mut App) {
app.insert_resource(WorldOffset::default());
app.add_systems(Startup, setup);
app.add_systems(Update, floating_origin_system.after(crate::systems::camera_system::camera_controller_system));
app.add_systems(Update, update_render_transform_system.after(floating_origin_system));
}
}

View File

@ -1,5 +1,4 @@
pub mod large_transform_plugin;
pub mod camera_plugin; pub mod camera_plugin;
pub mod ui_plugin; pub mod ui_plugin;
pub mod environment_plugin; pub mod environment_plugin;

View File

@ -5,7 +5,6 @@ use bevy::prelude::*;
use bevy_render::camera::{OrthographicProjection, Projection, ScalingMode}; use bevy_render::camera::{OrthographicProjection, Projection, ScalingMode};
use bevy_window::CursorGrabMode; use bevy_window::CursorGrabMode;
use crate::helper::egui_dock::MainCamera; use crate::helper::egui_dock::MainCamera;
use crate::helper::large_transform::{DoubleTransform, WorldOffset};
use crate::InspectorVisible; use crate::InspectorVisible;
use crate::systems::voxels::structure::{Ray, SparseVoxelOctree, Voxel}; use crate::systems::voxels::structure::{Ray, SparseVoxelOctree, Voxel};
@ -33,12 +32,7 @@ pub fn setup(mut commands: Commands,){
commands.spawn(( commands.spawn((
DoubleTransform { Transform::from_xyz(0.0, 0.0, 10.0), // initial f32
translation: DVec3::new(0.0, 0.0, 10.0),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
Transform::from_xyz(0.0, 5.0, 10.0), // initial f32
GlobalTransform::default(), GlobalTransform::default(),
Camera3d::default(), Camera3d::default(),
Projection::from(PerspectiveProjection{ Projection::from(PerspectiveProjection{
@ -64,13 +58,12 @@ pub fn camera_controller_system(
// Here we query for BOTH DoubleTransform (f64) and Transform (f32). // Here we query for BOTH DoubleTransform (f64) and Transform (f32).
// We'll update DoubleTransform for the "true" position // We'll update DoubleTransform for the "true" position
// and keep Transform in sync for rendering.a // and keep Transform in sync for rendering.a
mut query: Query<(&mut DoubleTransform, &mut Transform, &mut CameraController)>, mut query: Query<(&mut Transform, &mut CameraController)>,
mut octree_query: Query<&mut SparseVoxelOctree>, mut octree_query: Query<&mut SparseVoxelOctree>,
mut app_exit_events: EventWriter<AppExit>, mut app_exit_events: EventWriter<AppExit>,
world_offset: Res<WorldOffset>,
) { ) {
let mut window = windows.single_mut(); let mut window = windows.single_mut();
let (mut double_tf, mut render_tf, mut controller) = query.single_mut(); let (mut transform, mut controller) = query.single_mut();
// ==================== // ====================
// 1) Handle Mouse Look // 1) Handle Mouse Look
@ -87,10 +80,10 @@ pub fn camera_controller_system(
let pitch_radians = controller.pitch.to_radians(); let pitch_radians = controller.pitch.to_radians();
// Build a double-precision quaternion from those angles // Build a double-precision quaternion from those angles
let rot_yaw = DQuat::from_axis_angle(DVec3::Y, yaw_radians as f64); let rot_yaw = Quat::from_axis_angle(Vec3::Y, yaw_radians);
let rot_pitch = DQuat::from_axis_angle(DVec3::X, -pitch_radians as f64); let rot_pitch = Quat::from_axis_angle(Vec3::X, -pitch_radians);
double_tf.rotation = rot_yaw * rot_pitch; transform.rotation = rot_yaw * rot_pitch;
} }
} }
@ -109,30 +102,30 @@ pub fn camera_controller_system(
// ==================== // ====================
// 3) Handle Keyboard Movement (WASD, Space, Shift) // 3) Handle Keyboard Movement (WASD, Space, Shift)
// ==================== // ====================
let mut direction = DVec3::ZERO; let mut direction = Vec3::ZERO;
// Forward/Back // Forward/Back
if keyboard_input.pressed(KeyCode::KeyW) { if keyboard_input.pressed(KeyCode::KeyW) {
direction += double_tf.forward(); direction += transform.forward().as_vec3();
} }
if keyboard_input.pressed(KeyCode::KeyS) { if keyboard_input.pressed(KeyCode::KeyS) {
direction -= double_tf.forward(); direction -= transform.forward().as_vec3();
} }
// Left/Right // Left/Right
if keyboard_input.pressed(KeyCode::KeyA) { if keyboard_input.pressed(KeyCode::KeyA) {
direction -= double_tf.right(); direction -= transform.right().as_vec3();
} }
if keyboard_input.pressed(KeyCode::KeyD) { if keyboard_input.pressed(KeyCode::KeyD) {
direction += double_tf.right(); direction += transform.right().as_vec3();
} }
// Up/Down // Up/Down
if keyboard_input.pressed(KeyCode::Space) { if keyboard_input.pressed(KeyCode::Space) {
direction += double_tf.up(); direction += transform.up().as_vec3();
} }
if keyboard_input.pressed(KeyCode::ShiftLeft) || keyboard_input.pressed(KeyCode::ShiftRight) { if keyboard_input.pressed(KeyCode::ShiftLeft) || keyboard_input.pressed(KeyCode::ShiftRight) {
direction -= double_tf.up(); direction -= transform.up().as_vec3();
} }
// Normalize direction if needed // Normalize direction if needed
@ -143,7 +136,7 @@ pub fn camera_controller_system(
// Apply movement in double-precision // Apply movement in double-precision
let delta_seconds = time.delta_secs_f64(); let delta_seconds = time.delta_secs_f64();
let distance = controller.speed as f64 * delta_seconds; let distance = controller.speed as f64 * delta_seconds;
double_tf.translation += direction * distance; transform.translation += direction * distance as f32;
@ -185,7 +178,7 @@ pub fn camera_controller_system(
} }
if keyboard_input.just_pressed(KeyCode::KeyQ) && window.cursor_options.visible == false{ if keyboard_input.just_pressed(KeyCode::KeyQ) && window.cursor_options.visible == false{
for mut octree in octree_query.iter_mut() { for mut octree in octree_query.iter_mut() {
octree.insert(double_tf.translation.x as f64, double_tf.translation.y as f64, double_tf.translation.z as f64, Voxel::new(Color::srgb(1.0, 0.0, 0.0))); octree.insert(transform.translation.x, transform.translation.y, transform.translation.z, Voxel::new(Color::srgb(1.0, 0.0, 0.0)));
} }
} }
@ -198,12 +191,12 @@ pub fn camera_controller_system(
// Get the mouse position in normalized device coordinates (-1 to 1) // Get the mouse position in normalized device coordinates (-1 to 1)
if let Some(_) = window.cursor_position() { if let Some(_) = window.cursor_position() {
// Set the ray direction to the camera's forward vector // Set the ray direction to the camera's forward vector
let ray_origin = world_offset.0 + double_tf.translation; let ray_origin = transform.translation;
let ray_direction = double_tf.forward().normalize(); let ray_direction = transform.forward().normalize();
let ray = Ray { let ray = Ray {
origin: ray_origin.as_vec3(), origin: ray_origin,
direction: ray_direction.as_vec3(), direction: ray_direction,
}; };
@ -229,17 +222,6 @@ pub fn camera_controller_system(
BLUE, BLUE,
);*/ );*/
let chunk = octree.compute_chunk_coords(hit_x, hit_y, hit_z);
info!("Chunk Hit: {},{},{}", chunk.0, chunk.1, chunk.2);
if let Some(chunk_node) = octree.get_chunk_node(hit_x,hit_y,hit_z) {
let has_volume = octree.has_volume(chunk_node);
info!("Chunk Has Volume: {}", has_volume);
}
@ -258,9 +240,9 @@ pub fn camera_controller_system(
// Align the offset position to the center of the nearest voxel // Align the offset position to the center of the nearest voxel
let (new_voxel_x, new_voxel_y, new_voxel_z) = octree.normalize_to_voxel_at_depth( let (new_voxel_x, new_voxel_y, new_voxel_z) = octree.normalize_to_voxel_at_depth(
offset_position.x as f64, offset_position.x,
offset_position.y as f64, offset_position.y,
offset_position.z as f64, offset_position.z,
depth, depth,
); );
@ -278,9 +260,9 @@ pub fn camera_controller_system(
// Align the offset position to the center of the nearest voxel // Align the offset position to the center of the nearest voxel
let (new_voxel_x, new_voxel_y, new_voxel_z) = octree.normalize_to_voxel_at_depth( let (new_voxel_x, new_voxel_y, new_voxel_z) = octree.normalize_to_voxel_at_depth(
offset_position.x as f64, offset_position.x,
offset_position.y as f64, offset_position.y,
offset_position.z as f64, offset_position.z,
depth, depth,
); );
@ -305,14 +287,6 @@ pub fn camera_controller_system(
app_exit_events.send(Default::default()); app_exit_events.send(Default::default());
} }
// =============================================
// 8) Convert DoubleTransform -> Bevy Transform
// =============================================
// The final step is to update the f32 `Transform` that Bevy uses for rendering.
// This ensures the camera is visually placed at the correct position.
render_tf.translation = double_tf.translation.as_vec3();
render_tf.rotation = double_tf.rotation.as_quat();
render_tf.scale = double_tf.scale.as_vec3();
} }

View File

@ -2,7 +2,6 @@ use bevy::color::palettes::basic::*;
use bevy::color::palettes::css::{BEIGE, MIDNIGHT_BLUE, ORANGE, ORANGE_RED, SEA_GREEN}; use bevy::color::palettes::css::{BEIGE, MIDNIGHT_BLUE, ORANGE, ORANGE_RED, SEA_GREEN};
use bevy::math::*; use bevy::math::*;
use bevy::prelude::*; use bevy::prelude::*;
use crate::helper::large_transform::DoubleTransform;
use crate::systems::voxels::structure::{SparseVoxelOctree, Voxel}; use crate::systems::voxels::structure::{SparseVoxelOctree, Voxel};
/*pub fn setup( /*pub fn setup(
mut commands: Commands, mut commands: Commands,
@ -15,7 +14,7 @@ use crate::systems::voxels::structure::{SparseVoxelOctree, Voxel};
DoubleTransform { DoubleTransform {
translation: DVec3::new(0.0, 0.0, 10.0), translation: DVec3::new(0.0, 0.0, 10.0),
// rotate -90 degrees around X so the circle is on the XY plane // rotate -90 degrees around X so the circle is on the XY plane
rotation: DQuat::from_euler(EulerRot::XYZ, -std::f64::consts::FRAC_PI_2, 0.0, 0.0), rotation: DQuat::from_euler(EulerRot::XYZ, -std::f32::consts::FRAC_PI_2, 0.0, 0.0),
scale: DVec3::ONE, scale: DVec3::ONE,
}, },
// Bevy's transform components // Bevy's transform components
@ -65,7 +64,7 @@ pub fn setup(mut commands: Commands,) {
let voxels_per_unit = 16; let voxels_per_unit = 16;
let unit_size = 1.0; // 1 unit in your coordinate space let unit_size = 1.0; // 1 unit in your coordinate space
let voxel_size = unit_size / voxels_per_unit as f64; let voxel_size = unit_size / voxels_per_unit as f32;
/*//Octree /*//Octree
let octree_base_size = 64.0; let octree_base_size = 64.0;
@ -76,7 +75,7 @@ pub fn setup(mut commands: Commands,) {
let octree_depth = 10; let octree_depth = 10;
let mut octree = SparseVoxelOctree::new(octree_depth, octree_base_size, false, false, false); let mut octree = SparseVoxelOctree::new(octree_depth, octree_base_size as f32, false, false, false);
let color = Color::rgb(0.2, 0.8, 0.2); let color = Color::rgb(0.2, 0.8, 0.2);
@ -90,11 +89,6 @@ pub fn setup(mut commands: Commands,) {
commands.spawn( commands.spawn(
( (
DoubleTransform {
translation: DVec3::new(0.0, 0.0, 0.0),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
Transform::default(), Transform::default(),
octree octree
) )
@ -104,11 +98,6 @@ pub fn setup(mut commands: Commands,) {
commands.spawn(( commands.spawn((
Transform::default(), Transform::default(),
GlobalTransform::default(), GlobalTransform::default(),
DoubleTransform {
translation: DVec3::new(0.0, 0.0, 0.0),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
PointLight { PointLight {
shadows_enabled: true, shadows_enabled: true,
..default() ..default()
@ -125,30 +114,30 @@ pub fn setup(mut commands: Commands,) {
/// - `voxel_step`: how finely to sample the sphere in the x/y/z loops /// - `voxel_step`: how finely to sample the sphere in the x/y/z loops
fn generate_voxel_sphere( fn generate_voxel_sphere(
octree: &mut SparseVoxelOctree, octree: &mut SparseVoxelOctree,
planet_radius: f64, planet_radius: i32,
voxel_color: Color, voxel_color: Color,
) { ) {
// For simplicity, we center the sphere around (0,0,0). // For simplicity, we center the sphere around (0,0,0).
// We'll loop over a cubic region [-planet_radius, +planet_radius] in x, y, z // We'll loop over a cubic region [-planet_radius, +planet_radius] in x, y, z
let min = -(planet_radius as i64); let min = -planet_radius;
let max = planet_radius as i64; let max = planet_radius;
let step = octree.get_spacing_at_depth(octree.max_depth); let step = octree.get_spacing_at_depth(octree.max_depth);
for ix in min..=max { for ix in min..=max {
let x = ix as f64; let x = ix;
for iy in min..=max { for iy in min..=max {
let y = iy as f64; let y = iy;
for iz in min..=max { for iz in min..=max {
let z = iz as f64; let z = iz;
// Check if within sphere of radius `planet_radius` // Check if within sphere of radius `planet_radius`
let dist2 = x * x + y * y + z * z; let dist2 = x * x + y * y + z * z;
if dist2 <= planet_radius * planet_radius { if dist2 <= planet_radius * planet_radius {
// Convert (x,y,z) to world space, stepping by `voxel_step`. // Convert (x,y,z) to world space, stepping by `voxel_step`.
let wx = x * step; let wx = x as f32 * step;
let wy = y * step; let wy = y as f32 * step;
let wz = z * step; let wz = z as f32 * step;
// Insert the voxel // Insert the voxel
let voxel = Voxel { let voxel = Voxel {
@ -180,11 +169,11 @@ fn generate_voxel_rect(
// Triple-nested loop for each voxel in [0..16, 0..256, 0..16] // Triple-nested loop for each voxel in [0..16, 0..256, 0..16]
for ix in 0..size_x { for ix in 0..size_x {
let x = ix as f64; let x = ix as f32;
for iy in 0..size_y { for iy in 0..size_y {
let y = iy as f64; let y = iy as f32;
for iz in 0..size_z { for iz in 0..size_z {
let z = iz as f64; let z = iz as f32;
// Convert (x,y,z) to world coordinates // Convert (x,y,z) to world coordinates
let wx = x * step; let wx = x * step;
@ -216,9 +205,9 @@ fn generate_large_plane(
// Double-nested loop for each voxel in [0..width, 0..depth], // Double-nested loop for each voxel in [0..width, 0..depth],
// with y=0. // with y=0.
for ix in 0..width { for ix in 0..width {
let x = ix as f64; let x = ix as f32;
for iz in 0..depth { for iz in 0..depth {
let z = iz as f64; let z = iz as f32;
// y is always 0. // y is always 0.
let y = 0.0; let y = 0.0;

View File

@ -2,4 +2,4 @@ pub mod camera_system;
pub mod ui_system; pub mod ui_system;
pub mod environment_system; pub mod environment_system;
pub mod voxels; pub mod voxels;

View File

@ -1,6 +1,5 @@
use bevy::asset::AssetServer; use bevy::asset::AssetServer;
use bevy::prelude::*; use bevy::prelude::*;
use crate::helper::large_transform::{DoubleTransform, WorldOffset};
use crate::systems::camera_system::CameraController; use crate::systems::camera_system::CameraController;
use crate::systems::voxels::structure::{SparseVoxelOctree}; use crate::systems::voxels::structure::{SparseVoxelOctree};
@ -44,47 +43,23 @@ pub fn update(
// Query the camera controller so we can see its speed // Query the camera controller so we can see its speed
query_camera_controller: Query<&CameraController>, query_camera_controller: Query<&CameraController>,
// We also query for the camera's f32 `Transform` and the double `DoubleTransform` // We also query for the camera's f32 `Transform` and the double `DoubleTransform`
camera_query: Query<(&Transform, &DoubleTransform, &Camera)>, camera_query: Query<(&Transform, &Camera)>,
// The global offset resource, if you have one
world_offset: Res<WorldOffset>,
// The chunk-size logic from the octree, so we can compute chunk coords
octree_query: Query<&SparseVoxelOctree>, // or get_single if there's only one octree
// The UI text entity // The UI text entity
mut query_text: Query<&mut Text, With<SpeedDisplay>>, mut query_text: Query<&mut Text, With<SpeedDisplay>>,
) { ) {
let camera_controller = query_camera_controller.single(); let camera_controller = query_camera_controller.single();
let (transform, double_tf, _camera) = camera_query.single(); let (transform, _camera) = camera_query.single();
let mut text = query_text.single_mut(); let mut text = query_text.single_mut();
// The global double position: offset + camera's double translation
let global_pos = world_offset.0 + double_tf.translation;
// We'll attempt to get the octree so we can compute chunk coords
// If there's no octree, we just show "N/A".
/*let (chunk_cx, chunk_cy, chunk_cz) = if let Ok(octree) = octree_query.get_single() {
// 1) get voxel step
let step = octree.get_spacing_at_depth(octree.max_depth);
// 2) chunk world size
let chunk_world_size = CHUNK_SIZE as f64 * step;
// 3) compute chunk coords using global_pos
let cx = ((global_pos.x) / chunk_world_size).floor() as i32;
let cy = ((global_pos.y) / chunk_world_size).floor() as i32;
let cz = ((global_pos.z) / chunk_world_size).floor() as i32;
(cx, cy, cz)
} else {
(0, 0, 0) // or default
};*/
// Format the string to show speed, positions, and chunk coords // Format the string to show speed, positions, and chunk coords
text.0 = format!( text.0 = format!(
"\n Speed: {:.3}\n Position(f32): ({:.2},{:.2},{:.2})\n Position(f64): ({:.2},{:.2},{:.2})", "\n Speed: {:.3}\n Position(f32): ({:.2},{:.2},{:.2})",
camera_controller.speed, camera_controller.speed,
transform.translation.x, transform.translation.x,
transform.translation.y, transform.translation.y,
transform.translation.z, transform.translation.z,
global_pos.x,
global_pos.y,
global_pos.z,
); );
} }

View File

@ -1,29 +1,26 @@
use bevy::color::palettes::basic::{BLACK, RED, YELLOW}; use bevy::color::palettes::basic::{BLACK, RED, YELLOW};
use bevy::color::palettes::css::GREEN; use bevy::color::palettes::css::GREEN;
use bevy::math::{DQuat, DVec3, Vec3}; use bevy::math::{DQuat, Vec3};
use bevy::pbr::wireframe::Wireframe; use bevy::pbr::wireframe::Wireframe;
use bevy::prelude::*; use bevy::prelude::*;
use bevy::render::mesh::{Indices, PrimitiveTopology}; use bevy::render::mesh::{Indices, PrimitiveTopology};
use bevy::render::render_asset::RenderAssetUsages; use bevy::render::render_asset::RenderAssetUsages;
use bevy_egui::egui::emath::Numeric; use bevy_egui::egui::emath::Numeric;
use bevy_render::prelude::*; use crate::systems::voxels::structure::{ OctreeNode, SparseVoxelOctree};
use crate::helper::large_transform::DoubleTransform;
use crate::systems::voxels::structure::{ChunkEntities, OctreeNode, SparseVoxelOctree};
pub fn visualize_octree( pub fn visualize_octree(
mut gizmos: Gizmos, mut gizmos: Gizmos,
camera_query: Query<&DoubleTransform, With<Camera>>, camera_query: Query<&Transform, With<Camera>>,
octree_query: Query<(&SparseVoxelOctree, &DoubleTransform)>, octree_query: Query<(&SparseVoxelOctree, &Transform)>,
) { ) {
let camera_tf = camera_query.single(); // your "real" camera position in double precision let camera_tf = camera_query.single(); // your "real" camera position in double precision
let camera_pos = camera_tf.translation; // DVec3 let camera_pos = camera_tf.translation; // DVec3
for (octree, octree_tf) in octree_query.iter() { for (octree, octree_tf) in octree_query.iter() {
let octree_world_pos = octree_tf.translation;
visualize_recursive( visualize_recursive(
&mut gizmos, &mut gizmos,
&octree.root, &octree.root,
octree_world_pos, // octrees root center octree_tf.translation, // octrees root center
octree.size, octree.size,
octree.max_depth, octree.max_depth,
camera_pos, camera_pos,
@ -34,10 +31,10 @@ pub fn visualize_octree(
fn visualize_recursive( fn visualize_recursive(
gizmos: &mut Gizmos, gizmos: &mut Gizmos,
node: &OctreeNode, node: &OctreeNode,
node_center: DVec3, node_center: Vec3,
node_size: f64, node_size: f32,
depth: u32, depth: u32,
camera_pos: DVec3, camera_pos: Vec3,
) { ) {
if depth == 0 { if depth == 0 {
return; return;
@ -46,26 +43,30 @@ fn visualize_recursive(
// If you want to draw the bounding box of this node: // If you want to draw the bounding box of this node:
/*let half = node_size as f32 * 0.5;*/ /*let half = node_size as f32 * 0.5;*/
// Convert double center -> local f32 position // Convert double center -> local f32 position
let center_f32 = (node_center - camera_pos).as_vec3(); let center_f32 = (node_center - camera_pos);
// A quick approach: draw a wireframe cube by drawing lines for each edge // A quick approach: draw a wireframe cube by drawing lines for each edge
// Or use "cuboid gizmo" methods in future bevy versions that might exist. // Or use "cuboid gizmo" methods in future bevy versions that might exist.
/*draw_wire_cube(gizmos, center_f32, half, Color::YELLOW);*/ /*draw_wire_cube(gizmos, center_f32, half, Color::YELLOW);*/
gizmos.cuboid( gizmos.cuboid(
Transform::from_translation(center_f32).with_scale(Vec3::splat(node_size as f32)), Transform::from_translation(center_f32).with_scale(Vec3::splat(node_size)),
BLACK, BLACK,
); );
// Recurse children // Recurse children
if let Some(children) = &node.children { if let Some(children) = &node.children {
let child_size = node_size / 2.0; let child_size = node_size / 2.0;
for (i, child) in children.iter().enumerate() { for (i, child) in children.iter().enumerate() {
let offset_x = if (i & 1) == 1 { child_size / 2.0 } else { -child_size / 2.0 }; let offset_x = if (i & 1) == 1 { child_size / 2.0 } else { -child_size / 2.0 };
let offset_y = if (i & 2) == 2 { child_size / 2.0 } else { -child_size / 2.0 }; let offset_y = if (i & 2) == 2 { child_size / 2.0 } else { -child_size / 2.0 };
let offset_z = if (i & 4) == 4 { child_size / 2.0 } else { -child_size / 2.0 }; let offset_z = if (i & 4) == 4 { child_size / 2.0 } else { -child_size / 2.0 };
let child_center = DVec3::new( let child_center = Vec3::new(
node_center.x + offset_x, node_center.x + offset_x,
node_center.y + offset_y, node_center.y + offset_y,
node_center.z + offset_z, node_center.z + offset_z,
@ -87,8 +88,8 @@ fn visualize_recursive(
#[allow(dead_code)] #[allow(dead_code)]
pub fn draw_grid( pub fn draw_grid(
mut gizmos: Gizmos, mut gizmos: Gizmos,
camera_query: Query<&DoubleTransform, With<Camera>>, camera_query: Query<&Transform, With<Camera>>,
octree_query: Query<(&SparseVoxelOctree, &DoubleTransform)>, octree_query: Query<(&SparseVoxelOctree, &Transform)>,
) { ) {
// 1) Get the cameras double transform for offset // 1) Get the cameras double transform for offset
let camera_tf = camera_query.single(); let camera_tf = camera_query.single();
@ -100,19 +101,19 @@ pub fn draw_grid(
// 2) Octrees double position // 2) Octrees double position
let octree_pos = octree_dtf.translation; // e.g. [100_000, 0, 0] in double space let octree_pos = octree_dtf.translation; // e.g. [100_000, 0, 0] in double space
// 3) Compute spacing in f64 // 3) Compute spacing in f32
let grid_spacing = octree.get_spacing_at_depth(octree.max_depth) as f64; let grid_spacing = octree.get_spacing_at_depth(octree.max_depth) as f32;
let grid_size = (octree.size / grid_spacing) as i32; let grid_size = (octree.size / grid_spacing) as i32;
// 4) Start position in local "octree space" // 4) Start position in local "octree space"
// We'll define the bounding region from [-size/2, +size/2] // We'll define the bounding region from [-size/2, +size/2]
let half_size = octree.size * 0.5; let half_size = octree.size * 0.5;
let start_position = -half_size; // f64 let start_position = -half_size; // f32
// 5) Loop over lines // 5) Loop over lines
for i in 0..=grid_size { for i in 0..=grid_size {
// i-th line offset // i-th line offset
let offset = i as f64 * grid_spacing; let offset = i as f32 * grid_spacing;
// a) Lines along Z // a) Lines along Z
// from (start_position + offset, 0, start_position) // from (start_position + offset, 0, start_position)
@ -120,15 +121,15 @@ pub fn draw_grid(
{ {
let x = start_position + offset; let x = start_position + offset;
let z1 = start_position; let z1 = start_position;
let z2 = start_position + (grid_size as f64 * grid_spacing); let z2 = start_position + (grid_size as f32 * grid_spacing);
// Convert these points to "world double" by adding octree_pos // Convert these points to "world double" by adding octree_pos
let p1_d = DVec3::new(x, 0.0, z1) + octree_pos; let p1_d = Vec3::new(x, 0.0, z1) + octree_pos;
let p2_d = DVec3::new(x, 0.0, z2) + octree_pos; let p2_d = Vec3::new(x, 0.0, z2) + octree_pos;
// Then offset by camera_pos, convert to f32 // Then offset by camera_pos, convert to f32
let p1_f32 = (p1_d - camera_pos).as_vec3(); let p1_f32 = (p1_d - camera_pos);
let p2_f32 = (p2_d - camera_pos).as_vec3(); let p2_f32 = (p2_d - camera_pos);
// Draw the line // Draw the line
gizmos.line(p1_f32, p2_f32, Color::WHITE); gizmos.line(p1_f32, p2_f32, Color::WHITE);
@ -140,221 +141,16 @@ pub fn draw_grid(
{ {
let z = start_position + offset; let z = start_position + offset;
let x1 = start_position; let x1 = start_position;
let x2 = start_position + (grid_size as f64 * grid_spacing); let x2 = start_position + (grid_size as f32 * grid_spacing);
let p1_d = DVec3::new(x1, 0.0, z) + octree_pos; let p1_d = Vec3::new(x1, 0.0, z) + octree_pos;
let p2_d = DVec3::new(x2, 0.0, z) + octree_pos; let p2_d = Vec3::new(x2, 0.0, z) + octree_pos;
let p1_f32 = (p1_d - camera_pos).as_vec3(); let p1_f32 = (p1_d - camera_pos);
let p2_f32 = (p2_d - camera_pos).as_vec3(); let p2_f32 = (p2_d - camera_pos);
gizmos.line(p1_f32, p2_f32, Color::WHITE); gizmos.line(p1_f32, p2_f32, Color::WHITE);
} }
} }
} }
} }
/*#[derive(Component)]
pub struct GridMarker;
pub fn draw_grid(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
query: Query<(Entity, &SparseVoxelOctree)>, // Query to access the octree
grid_query: Query<Entity, With<GridMarker>>, // Query to find existing grid entities
) {
for (_, octree) in query.iter() {
if octree.show_world_grid {
// If grid should be shown, check if it already exists
if grid_query.iter().next().is_none() {
// Grid doesn't exist, so create it
let grid_spacing = octree.get_spacing_at_depth(octree.max_depth) as f32; // Get spacing at the specified depth
let grid_size = (octree.size / grid_spacing as f64) as i32; // Determine the number of lines needed
let mut positions = Vec::new();
let mut indices = Vec::new();
// Calculate the start position to center the grid
let start_position = -(octree.size as f32 / 2.0);
// Create lines along the X and Z axes based on calculated spacing
for i in 0..=grid_size {
// Lines along the Z-axis
positions.push([start_position + i as f32 * grid_spacing, 0.0, start_position]);
positions.push([start_position + i as f32 * grid_spacing, 0.0, start_position + grid_size as f32 * grid_spacing]);
// Indices for the Z-axis lines
let base_index = (i * 2) as u32;
indices.push(base_index);
indices.push(base_index + 1);
// Lines along the X-axis
positions.push([start_position, 0.0, start_position + i as f32 * grid_spacing]);
positions.push([start_position + grid_size as f32 * grid_spacing, 0.0, start_position + i as f32 * grid_spacing]);
// Indices for the X-axis lines
let base_index_x = ((grid_size + 1 + i) * 2) as u32;
indices.push(base_index_x);
indices.push(base_index_x + 1);
}
// Create the line mesh
let mut mesh = Mesh::new(PrimitiveTopology::LineList, RenderAssetUsages::default());
mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, positions);
mesh.insert_indices(Indices::U32(indices));
let color = bevy::color::Color::srgba(204.0 / 255.0, 0.0, 218.0 / 255.0, 15.0 / 255.0);
// Spawn the entity with the line mesh
commands.spawn(PbrBundle {
mesh: meshes.add(mesh).into(),
material: materials.add(StandardMaterial {
base_color: Color::WHITE,
unlit: true, // Makes the lines visible without lighting
..Default::default()
}).into(),
transform: Transform::default(),
..Default::default()
})
.insert(GridMarker); // Add a marker component to identify the grid
}
} else {
// If grid should not be shown, remove any existing grid
for grid_entity in grid_query.iter() {
commands.entity(grid_entity).despawn();
}
}
}
}
*/
/*#[derive(Component)]
pub struct BuildVisualization;
#[derive(Debug)]
pub struct EphemeralLine {
pub start: Vec3,
pub end: Vec3,
pub color: Color,
pub time_left: f32, // in seconds
}
#[derive(Resource, Default)]
pub struct EphemeralLines {
pub lines: Vec<EphemeralLine>,
}
pub fn ephemeral_lines_system(
mut lines: ResMut<EphemeralLines>,
mut gizmos: Gizmos,
time: Res<Time>,
) {
let dt = time.delta_secs();
// Retain only those with time_left > 0, and while they're active, draw them
lines.lines.retain_mut(|line| {
line.time_left -= dt;
if line.time_left > 0.0 {
// Draw the line with gizmos
gizmos.line(line.start, line.end, line.color);
// Keep it
true
} else {
// Times up, discard
false
}
});
}*/
// System that draws wireframe boxes around each chunk's bounding region.
pub fn debug_draw_chunks_system(
chunk_entities: Res<ChunkEntities>,
// If your chunk placement depends on the octree's transform
// query that. Otherwise you can skip if they're always at (0,0,0).
octree_query: Query<(&SparseVoxelOctree, &DoubleTransform)>,
// Optional: If you want large-world offset for camera, we can subtract camera position.
// If you don't have floating-origin logic, you can skip this.
camera_query: Query<&DoubleTransform, With<Camera>>,
mut gizmos: Gizmos,
) {
// We'll get the octree transform offset if we have only one octree.
// Adjust if you have multiple.
let (octree, octree_tf) = match octree_query.get_single() {
Ok(x) => x,
Err(_) => return,
};
// 1) Determine the world size of a single voxel
let step = octree.get_spacing_at_depth(octree.max_depth);
// chunk_size in world units = 16 voxels * step
let chunk_size_world = octree.get_chunk_size() as f64 * step;
// 2) We'll also get the octree's offset in double precision
let octree_pos_d = octree_tf.translation;
// If you want a floating origin approach, subtract the camera's double position:
let camera_tf = match camera_query.get_single() {
Ok(tf) => tf,
Err(_) => return,
};
let camera_pos_d = camera_tf.translation;
// For each chunk coordinate
for (&(cx, cy, cz), _entity) in chunk_entities.map.iter() {
// 4) Chunk bounding box in double precision
let chunk_min_d = octree_pos_d
+ DVec3::new(
cx as f64 * chunk_size_world,
cy as f64 * chunk_size_world,
cz as f64 * chunk_size_world,
);
let chunk_max_d = chunk_min_d + DVec3::splat(chunk_size_world);
// 5) Convert to local f32 near the camera
let min_f32 = (chunk_min_d - camera_pos_d).as_vec3();
let max_f32 = (chunk_max_d - camera_pos_d).as_vec3();
// 6) Draw ephemeral lines for the box
draw_wire_cube(&mut gizmos, min_f32, max_f32, Color::from(YELLOW));
}
}
/// Helper function to draw a wireframe box from `min` to `max` in ephemeral gizmos.
fn draw_wire_cube(
gizmos: &mut Gizmos,
min: Vec3,
max: Vec3,
color: Color,
) {
// corners
let c0 = Vec3::new(min.x, min.y, min.z);
let c1 = Vec3::new(max.x, min.y, min.z);
let c2 = Vec3::new(min.x, max.y, min.z);
let c3 = Vec3::new(max.x, max.y, min.z);
let c4 = Vec3::new(min.x, min.y, max.z);
let c5 = Vec3::new(max.x, min.y, max.z);
let c6 = Vec3::new(min.x, max.y, max.z);
let c7 = Vec3::new(max.x, max.y, max.z);
// edges
// bottom face
gizmos.line(c0, c1, color);
gizmos.line(c1, c3, color);
gizmos.line(c3, c2, color);
gizmos.line(c2, c0, color);
// top face
gizmos.line(c4, c5, color);
gizmos.line(c5, c7, color);
gizmos.line(c7, c6, color);
gizmos.line(c6, c4, color);
// verticals
gizmos.line(c0, c4, color);
gizmos.line(c1, c5, color);
gizmos.line(c2, c6, color);
gizmos.line(c3, c7, color);
}

View File

@ -21,24 +21,24 @@ impl SparseVoxelOctree {
} }
pub fn get_spacing_at_depth(&self, depth: u32) -> f64 { pub fn get_spacing_at_depth(&self, depth: u32) -> f32 {
// Ensure the depth does not exceed the maximum depth // Ensure the depth does not exceed the maximum depth
let effective_depth = depth.min(self.max_depth); let effective_depth = depth.min(self.max_depth);
// Calculate the voxel size at the specified depth // Calculate the voxel size at the specified depth
self.size / (2_u64.pow(effective_depth)) as f64 self.size / (2_u32.pow(effective_depth)) as f32
} }
/// Normalize the world position to the nearest voxel grid position at the specified depth. /// Normalize the world position to the nearest voxel grid position at the specified depth.
pub fn normalize_to_voxel_at_depth( pub fn normalize_to_voxel_at_depth(
&self, &self,
world_x: f64, world_x: f32,
world_y: f64, world_y: f32,
world_z: f64, world_z: f32,
depth: u32, depth: u32,
) -> (f64, f64, f64) { ) -> (f32, f32, f32) {
// Calculate the voxel size at the specified depth // Calculate the voxel size at the specified depth
let voxel_size = self.get_spacing_at_depth(depth); let voxel_size = self.get_spacing_at_depth(depth) as f32;
// Align the world position to the center of the voxel // Align the world position to the center of the voxel
let aligned_x = (world_x / voxel_size).floor() * voxel_size + voxel_size / 2.0; let aligned_x = (world_x / voxel_size).floor() * voxel_size + voxel_size / 2.0;
@ -106,7 +106,7 @@ impl SparseVoxelOctree {
} }
/// Checks if a position is within the current octree bounds. /// Checks if a position is within the current octree bounds.
pub fn contains(&self, x: f64, y: f64, z: f64) -> bool { pub fn contains(&self, x: f32, y: f32, z: f32) -> bool {
let half_size = self.size / 2.0; let half_size = self.size / 2.0;
let epsilon = 1e-6; // Epsilon for floating-point precision let epsilon = 1e-6; // Epsilon for floating-point precision
@ -115,7 +115,7 @@ impl SparseVoxelOctree {
(z >= -half_size - epsilon && z < half_size + epsilon) (z >= -half_size - epsilon && z < half_size + epsilon)
} }
pub fn get_voxel_at_world_coords(&self, world_x: f64, world_y: f64, world_z: f64) -> Option<&Voxel> { pub fn get_voxel_at_world_coords(&self, world_x: f32, world_y: f32, world_z: f32) -> Option<&Voxel> {
// Correct normalization: calculate the position relative to the octree's center // Correct normalization: calculate the position relative to the octree's center
let normalized_x = (world_x + (self.size / 2.0)) / self.size; let normalized_x = (world_x + (self.size / 2.0)) / self.size;
let normalized_y = (world_y + (self.size / 2.0)) / self.size; let normalized_y = (world_y + (self.size / 2.0)) / self.size;
@ -123,26 +123,7 @@ impl SparseVoxelOctree {
self.get_voxel_at(normalized_x, normalized_y, normalized_z) self.get_voxel_at(normalized_x, normalized_y, normalized_z)
} }
/// A small helper to compute chunk coords from a voxel's "true" world position
pub fn compute_chunk_coords(&self, world_x: f64, world_y: f64, world_z: f64) -> (i64, i64, i64) {
// The size of one voxel at max_depth
let step = self.get_spacing_at_depth(self.max_depth);
// Each chunk is 16 voxels => chunk_size_world = 16.0 * step
let chunk_size = self.get_chunk_size();
let chunk_size_world = chunk_size as f64 * step;
// Divide the world coords by chunk_size_world, floor => chunk coordinate
let cx = (world_x / chunk_size_world).floor();
let cy = (world_y / chunk_size_world).floor();
let cz = (world_z / chunk_size_world).floor();
(cx as i64, cy as i64, cz as i64)
}
pub fn has_volume(&self, node: &OctreeNode) -> bool { pub fn has_volume(&self, node: &OctreeNode) -> bool {
// Check if this node is a leaf with a voxel // Check if this node is a leaf with a voxel
@ -163,35 +144,13 @@ impl SparseVoxelOctree {
false false
} }
pub fn get_chunk_size(&self) -> u32 {
self.max_depth - 1
}
pub fn get_chunk_node(&self, world_x: f64, world_y: f64, world_z: f64) -> Option<&OctreeNode> {
// Ensure the world position is within the octree's bounds
if !self.contains(world_x, world_y, world_z) {
return None;
}
// Normalize the world position to the octree's space
let normalized_x = (world_x + (self.size / 2.0)) / self.size;
let normalized_y = (world_y + (self.size / 2.0)) / self.size;
let normalized_z = (world_z + (self.size / 2.0)) / self.size;
let chunk_size = self.get_chunk_size();
// Traverse to the appropriate chunk node
Self::get_node_at_depth(&self.root, normalized_x, normalized_y, normalized_z, chunk_size)
}
/// Helper function to recursively traverse the octree to a specific depth. /// Helper function to recursively traverse the octree to a specific depth.
fn get_node_at_depth( fn get_node_at_depth(
node: &OctreeNode, node: &OctreeNode,
x: f64, x: f32,
y: f64, y: f32,
z: f64, z: f32,
depth: u32, depth: u32,
) -> Option<&OctreeNode> { ) -> Option<&OctreeNode> {
if depth == 0 { if depth == 0 {
@ -205,7 +164,7 @@ impl SparseVoxelOctree {
+ ((y >= 0.5 - epsilon) as usize * 2) + ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4); + ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f64| { let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon { if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0 (coord - 0.5) * 2.0
} else { } else {
@ -226,54 +185,13 @@ impl SparseVoxelOctree {
} }
} }
pub fn traverse_chunk(
&self,
node: &OctreeNode,
chunk_size: u32,
) -> Vec<(f32, f32, f32, Color, u32)> {
let mut voxels = Vec::new();
Self::traverse_chunk_recursive(node, 0.0, 0.0, 0.0, chunk_size as f32, 0, &mut voxels);
voxels
}
fn traverse_chunk_recursive(
node: &OctreeNode,
x: f32,
y: f32,
z: f32,
size: f32,
depth: u32,
voxels: &mut Vec<(f32, f32, f32, Color, u32)>,
) {
if node.is_leaf {
if let Some(voxel) = node.voxel {
voxels.push((x, y, z, voxel.color, depth));
}
}
if let Some(ref children) = node.children {
let half_size = size / 2.0;
for (i, child) in children.iter().enumerate() {
let offset = |bit: usize| if (i & bit) == bit { half_size } else { 0.0 };
Self::traverse_chunk_recursive(
child,
x + offset(1),
y + offset(2),
z + offset(4),
half_size,
depth + 1,
voxels,
);
}
}
}
} }
/// Returns the (face_normal, local_offset) for the given neighbor direction. /// Returns the (face_normal, local_offset) for the given neighbor direction.
/// - `dx, dy, dz`: The integer direction of the face (-1,0,0 / 1,0,0 / etc.) /// - `dx, dy, dz`: The integer direction of the face (-1,0,0 / 1,0,0 / etc.)
/// - `voxel_size_f`: The world size of a single voxel (e.g. step as f32). /// - `voxel_size_f`: The world size of a single voxel (e.g. step as f32).
pub fn face_orientation(dx: f64, dy: f64, dz: f64, voxel_size_f: f32) -> (Vec3, Vec3) { pub fn face_orientation(dx: f32, dy: f32, dz: f32, voxel_size_f: f32) -> (Vec3, Vec3) {
// We'll do a match on the direction // We'll do a match on the direction
match (dx, dy, dz) { match (dx, dy, dz) {
// Negative X => face normal is (-1, 0, 0), local offset is -voxel_size/2 in X // Negative X => face normal is (-1, 0, 0), local offset is -voxel_size/2 in X

View File

@ -5,12 +5,11 @@ use bevy::math::{DQuat, DVec3};
use bevy::prelude::*; use bevy::prelude::*;
use bevy::render::mesh::{Indices, PrimitiveTopology, VertexAttributeValues}; use bevy::render::mesh::{Indices, PrimitiveTopology, VertexAttributeValues};
use bevy::render::render_asset::RenderAssetUsages; use bevy::render::render_asset::RenderAssetUsages;
use crate::helper::large_transform::DoubleTransform; use crate::systems::voxels::structure::{OctreeNode, Ray, SparseVoxelOctree, Voxel, AABB, NEIGHBOR_OFFSETS};
use crate::systems::voxels::structure::{ChunkEntities, OctreeNode, Ray, SparseVoxelOctree, Voxel, AABB, CHUNK_BUILD_BUDGET, CHUNK_NEIGHBOR_OFFSETS, CHUNK_RENDER_DISTANCE, NEIGHBOR_OFFSETS};
impl SparseVoxelOctree { impl SparseVoxelOctree {
/// Creates a new octree with the specified max depth, size, and wireframe visibility. /// Creates a new octree with the specified max depth, size, and wireframe visibility.
pub fn new(max_depth: u32, size: f64, show_wireframe: bool, show_world_grid: bool, show_chunks: bool) -> Self { pub fn new(max_depth: u32, size: f32, show_wireframe: bool, show_world_grid: bool, show_chunks: bool) -> Self {
Self { Self {
root: OctreeNode::new(), root: OctreeNode::new(),
max_depth, max_depth,
@ -18,11 +17,11 @@ impl SparseVoxelOctree {
show_wireframe, show_wireframe,
show_world_grid, show_world_grid,
show_chunks, show_chunks,
dirty_chunks: HashSet::new(), dirty: true,
} }
} }
pub fn insert(&mut self, world_x: f64, world_y: f64, world_z: f64, voxel: Voxel) { pub fn insert(&mut self, world_x: f32, world_y: f32, world_z: f32, voxel: Voxel) {
// Normalize the world coordinates to the nearest voxel grid position // Normalize the world coordinates to the nearest voxel grid position
let (aligned_x, aligned_y, aligned_z) = self.normalize_to_voxel_at_depth(world_x, world_y, world_z, self.max_depth); let (aligned_x, aligned_y, aligned_z) = self.normalize_to_voxel_at_depth(world_x, world_y, world_z, self.max_depth);
@ -41,21 +40,13 @@ impl SparseVoxelOctree {
voxel_with_position.position = Vec3::new(world_x as f32, world_y as f32, world_z as f32); voxel_with_position.position = Vec3::new(world_x as f32, world_y as f32, world_z as f32);
// Actually let's do a small helper: self.dirty = true;
let (cx, cy, cz) = self.compute_chunk_coords(world_x, world_y, world_z);
self.dirty_chunks.insert((cx as i32, cy as i32, cz as i32));
// 5b) Also mark the 6 neighboring chunks dirty to fix boundary faces
for &(nx, ny, nz) in CHUNK_NEIGHBOR_OFFSETS.iter() {
let neighbor_coord = (cx as i32 + nx, cy as i32 + ny, cz as i32 + nz);
self.dirty_chunks.insert(neighbor_coord);
}
SparseVoxelOctree::insert_recursive(&mut self.root, normalized_x, normalized_y, normalized_z, voxel_with_position, self.max_depth); SparseVoxelOctree::insert_recursive(&mut self.root, normalized_x, normalized_y, normalized_z, voxel_with_position, self.max_depth);
} }
fn insert_recursive(node: &mut OctreeNode, x: f64, y: f64, z: f64, voxel: Voxel, depth: u32) { fn insert_recursive(node: &mut OctreeNode, x: f32, y: f32, z: f32, voxel: Voxel, depth: u32) {
if depth == 0 { if depth == 0 {
node.voxel = Some(voxel); node.voxel = Some(voxel);
node.is_leaf = true; node.is_leaf = true;
@ -72,7 +63,7 @@ impl SparseVoxelOctree {
} }
if let Some(ref mut children) = node.children { if let Some(ref mut children) = node.children {
let adjust_coord = |coord: f64| { let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon { if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0 (coord - 0.5) * 2.0
} else { } else {
@ -83,7 +74,7 @@ impl SparseVoxelOctree {
} }
} }
pub fn remove(&mut self, world_x: f64, world_y: f64, world_z: f64) { pub fn remove(&mut self, world_x: f32, world_y: f32, world_z: f32) {
// Normalize the world coordinates to the nearest voxel grid position // Normalize the world coordinates to the nearest voxel grid position
let (aligned_x, aligned_y, aligned_z) = let (aligned_x, aligned_y, aligned_z) =
self.normalize_to_voxel_at_depth(world_x, world_y, world_z, self.max_depth); self.normalize_to_voxel_at_depth(world_x, world_y, world_z, self.max_depth);
@ -93,21 +84,14 @@ impl SparseVoxelOctree {
let normalized_y = (aligned_y + (self.size / 2.0)) / self.size; let normalized_y = (aligned_y + (self.size / 2.0)) / self.size;
let normalized_z = (aligned_z + (self.size / 2.0)) / self.size; let normalized_z = (aligned_z + (self.size / 2.0)) / self.size;
// figure out chunk coords for the removed voxel: self.dirty = true;
let (cx, cy, cz) = self.compute_chunk_coords(world_x, world_y, world_z);
self.dirty_chunks.insert((cx as i32, cy as i32, cz as i32));
for &(nx, ny, nz) in CHUNK_NEIGHBOR_OFFSETS.iter() {
let neighbor_coord = (cx as i32 + nx, cy as i32 + ny, cz as i32 + nz);
self.dirty_chunks.insert(neighbor_coord);
}
// Call the recursive remove function // Call the recursive remove function
Self::remove_recursive(&mut self.root, normalized_x, normalized_y, normalized_z, self.max_depth); Self::remove_recursive(&mut self.root, normalized_x, normalized_y, normalized_z, self.max_depth);
} }
fn remove_recursive(node: &mut OctreeNode, x: f64, y: f64, z: f64, depth: u32) -> bool { fn remove_recursive(node: &mut OctreeNode, x: f32, y: f32, z: f32, depth: u32) -> bool {
if depth == 0 { if depth == 0 {
// This is the leaf node where the voxel should be // This is the leaf node where the voxel should be
if node.voxel.is_some() { if node.voxel.is_some() {
@ -131,7 +115,7 @@ impl SparseVoxelOctree {
+ ((y >= 0.5 - epsilon) as usize * 2) + ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4); + ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f64| { let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon { if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0 (coord - 0.5) * 2.0
} else { } else {
@ -169,7 +153,7 @@ impl SparseVoxelOctree {
} }
fn expand_root(&mut self, x: f64, y: f64, z: f64) { fn expand_root(&mut self, x: f32, y: f32, z: f32) {
let new_size = self.size * 2.0; let new_size = self.size * 2.0;
let new_depth = self.max_depth + 1; let new_depth = self.max_depth + 1;
@ -252,15 +236,15 @@ impl SparseVoxelOctree {
/// Retrieves a reference to the voxel at the given normalized coordinates and depth, if it exists. /// Retrieves a reference to the voxel at the given normalized coordinates and depth, if it exists.
pub fn get_voxel_at(&self, x: f64, y: f64, z: f64) -> Option<&Voxel> { pub fn get_voxel_at(&self, x: f32, y: f32, z: f32) -> Option<&Voxel> {
Self::get_voxel_recursive(&self.root, x, y, z) Self::get_voxel_recursive(&self.root, x, y, z)
} }
fn get_voxel_recursive( fn get_voxel_recursive(
node: &OctreeNode, node: &OctreeNode,
x: f64, x: f32,
y: f64, y: f32,
z: f64, z: f32,
) -> Option<&Voxel> { ) -> Option<&Voxel> {
if node.is_leaf { if node.is_leaf {
return node.voxel.as_ref(); return node.voxel.as_ref();
@ -272,7 +256,7 @@ impl SparseVoxelOctree {
+ ((y >= 0.5 - epsilon) as usize * 2) + ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4); + ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f64| { let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon { if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0 (coord - 0.5) * 2.0
} else { } else {
@ -295,9 +279,9 @@ impl SparseVoxelOctree {
/// The offsets are directions (-1, 0, 1) for x, y, z. /// The offsets are directions (-1, 0, 1) for x, y, z.
pub fn has_neighbor( pub fn has_neighbor(
&self, &self,
world_x: f64, world_x: f32,
world_y: f64, world_y: f32,
world_z: f64, world_z: f32,
offset_x: i32, offset_x: i32,
offset_y: i32, offset_y: i32,
offset_z: i32, offset_z: i32,
@ -311,9 +295,9 @@ impl SparseVoxelOctree {
let voxel_size = self.get_spacing_at_depth(depth); let voxel_size = self.get_spacing_at_depth(depth);
// Calculate the neighbor's world position // Calculate the neighbor's world position
let neighbor_x = aligned_x + (offset_x as f64) * voxel_size; let neighbor_x = aligned_x + (offset_x as f32) * voxel_size;
let neighbor_y = aligned_y + (offset_y as f64) * voxel_size; let neighbor_y = aligned_y + (offset_y as f32) * voxel_size;
let neighbor_z = aligned_z + (offset_z as f64) * voxel_size; let neighbor_z = aligned_z + (offset_z as f32) * voxel_size;
// Check if the neighbor position is within bounds // Check if the neighbor position is within bounds
if !self.contains(neighbor_x, neighbor_y, neighbor_z) { if !self.contains(neighbor_x, neighbor_y, neighbor_z) {
@ -327,7 +311,7 @@ impl SparseVoxelOctree {
/// Performs a raycast against the octree and returns the first intersected voxel. /// Performs a raycast against the octree and returns the first intersected voxel.
pub fn raycast(&self, ray: &Ray) -> Option<(f64, f64, f64, u32, Vec3)> { pub fn raycast(&self, ray: &Ray) -> Option<(f32, f32, f32, u32, Vec3)> {
// Start from the root node // Start from the root node
let half_size = self.size / 2.0; let half_size = self.size / 2.0;
let root_bounds = AABB { let root_bounds = AABB {
@ -348,7 +332,7 @@ impl SparseVoxelOctree {
ray: &Ray, ray: &Ray,
bounds: &AABB, bounds: &AABB,
depth: u32, depth: u32,
) -> Option<(f64, f64, f64, u32, Vec3)> { ) -> Option<(f32, f32, f32, u32, Vec3)> {
// Check if the ray intersects this node's bounding box // Check if the ray intersects this node's bounding box
if let Some((t_enter, _, normal)) = self.ray_intersects_aabb_with_normal(ray, bounds) { if let Some((t_enter, _, normal)) = self.ray_intersects_aabb_with_normal(ray, bounds) {
// If this is a leaf node and contains a voxel, return it // If this is a leaf node and contains a voxel, return it
@ -358,9 +342,9 @@ impl SparseVoxelOctree {
// Return the hit position along with depth and normal // Return the hit position along with depth and normal
return Some(( return Some((
hit_position.x as f64, hit_position.x as f32,
hit_position.y as f64, hit_position.y as f32,
hit_position.z as f64, hit_position.z as f32,
depth, depth,
normal, normal,
)); ));

View File

@ -1,19 +1,17 @@
// Chunk Rendering use std::collections::HashMap;
use bevy::color::palettes::basic::BLUE;
use bevy::math::{DQuat, DVec3};
use bevy::prelude::*; use bevy::prelude::*;
use bevy::utils::info;
use bevy_asset::RenderAssetUsages; use bevy_asset::RenderAssetUsages;
use bevy_render::mesh::{Indices, PrimitiveTopology, VertexAttributeValues}; use bevy_render::mesh::{Indices, PrimitiveTopology, VertexAttributeValues};
use crate::helper::large_transform::{DoubleTransform, WorldOffset}; use crate::systems::ui_system::SpeedDisplay;
use crate::systems::voxels::structure::{ChunkEntities, ChunkMarker, SparseVoxelOctree, CHUNK_BUILD_BUDGET, CHUNK_RENDER_DISTANCE, NEIGHBOR_OFFSETS}; use crate::systems::voxels::structure::{SparseVoxelOctree, NEIGHBOR_OFFSETS};
use crate::helper::large_transform::get_true_world_position;
use crate::systems::voxels::helper::face_orientation;
/*pub fn render(
pub fn render(
mut commands: Commands, mut commands: Commands,
mut query: Query<&mut SparseVoxelOctree>, mut query: Query<&mut SparseVoxelOctree>,
mut octree_transform_query: Query<&DoubleTransform, With<SparseVoxelOctree>>, octree_transform_query: Query<&Transform, With<SparseVoxelOctree>>,
render_object_query: Query<Entity, With<VoxelTerrainMarker>>, render_object_query: Query<Entity, With<VoxelTerrainMarker>>,
mut meshes: ResMut<Assets<Mesh>>, mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>, mut materials: ResMut<Assets<StandardMaterial>>,
@ -29,7 +27,7 @@ use crate::systems::voxels::helper::face_orientation;
// Handle updates to the octree only if it is marked as dirty // Handle updates to the octree only if it is marked as dirty
if !octree.dirty_chunks.is_empty() { if octree.dirty {
// Clear existing render objects // Clear existing render objects
for entity in render_object_query.iter() { for entity in render_object_query.iter() {
commands.entity(entity).despawn(); commands.entity(entity).despawn();
@ -41,19 +39,19 @@ use crate::systems::voxels::helper::face_orientation;
let mut voxel_meshes = Vec::new(); let mut voxel_meshes = Vec::new();
for (x, y, z, _color, depth) in voxels { for (x, y, z, _color, depth) in voxels {
let voxel_size = octree.get_spacing_at_depth(depth) as f32; let voxel_size = octree.get_spacing_at_depth(depth);
// Calculate the world position of the voxel // Calculate the world position of the voxel
let world_position = Vec3::new( let world_position = Vec3::new(
(x * octree.size as f32) + (voxel_size / 2.0) - (octree.size / 2.0) as f32, (x * octree.size) + (voxel_size / 2.0) - (octree.size / 2.0),
(y * octree.size as f32) + (voxel_size / 2.0) - (octree.size / 2.0) as f32, (y * octree.size) + (voxel_size / 2.0) - (octree.size / 2.0),
(z * octree.size as f32) + (voxel_size / 2.0) - (octree.size / 2.0) as f32, (z * octree.size) + (voxel_size / 2.0) - (octree.size / 2.0),
); );
// Convert world_position components to f64 for neighbor checking // Convert world_position components to f32 for neighbor checking
let world_x = world_position.x as f64; let world_x = world_position.x;
let world_y = world_position.y as f64; let world_y = world_position.y;
let world_z = world_position.z as f64; let world_z = world_position.z;
// Iterate over all possible neighbor offsets // Iterate over all possible neighbor offsets
for &(dx, dy, dz) in NEIGHBOR_OFFSETS.iter() { for &(dx, dy, dz) in NEIGHBOR_OFFSETS.iter() {
@ -113,353 +111,24 @@ use crate::systems::voxels::helper::face_orientation;
base_color: Color::srgb(0.8, 0.7, 0.6), base_color: Color::srgb(0.8, 0.7, 0.6),
..Default::default() ..Default::default()
})), })),
transform: Default::default(), transform: *octree_transform_query.single(),
..Default::default() ..Default::default()
}, },
VoxelTerrainMarker {}, VoxelTerrainMarker {},
DoubleTransform {
translation: octree_transform_query.single().translation,
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
)); ));
// Reset the dirty flag once the update is complete // Reset the dirty flag once the update is complete
octree.dirty_chunks.clear() octree.dirty = false;
} }
} }
} }
*/
#[derive(Component)] #[derive(Component)]
pub struct VoxelTerrainMarker; pub struct VoxelTerrainMarker;
pub fn render(
mut commands: Commands,
mut octree_query: Query<&mut SparseVoxelOctree>,
octree_transform_query: Query<&DoubleTransform, With<SparseVoxelOctree>>,
mut chunk_entities: ResMut<ChunkEntities>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
// Use DoubleTransform for the camera
camera_query: Query<&DoubleTransform, With<Camera>>,
) {
let mut octree = match octree_query.get_single_mut() {
Ok(o) => o,
Err(_) => return,
};
let camera_dt = match camera_query.get_single() {
Ok(dt) => dt,
Err(_) => return,
};
// Convert camera's double position to f32 for distance calculations.
let camera_pos = camera_dt.translation.as_vec3();
let octree_dt = octree_transform_query.single();
let octree_offset = octree_dt.translation.as_vec3();
// Define chunk sizing.
let step = octree.get_spacing_at_depth(octree.max_depth);
let chunk_world_size = octree.get_chunk_size() as f32 * step as f32;
// 1) DESPAWN out-of-range chunks.
let mut chunks_to_remove = Vec::new();
for (&(cx, cy, cz), &entity) in chunk_entities.map.iter() {
let chunk_min = Vec3::new(
cx as f32 * chunk_world_size,
cy as f32 * chunk_world_size,
cz as f32 * chunk_world_size,
);
let chunk_center = chunk_min + Vec3::splat(chunk_world_size * 0.5);
let final_center = octree_offset + chunk_center;
let dist = camera_pos.distance(final_center);
if dist > CHUNK_RENDER_DISTANCE as f32 {
chunks_to_remove.push((cx, cy, cz, entity));
}
}
for (cx, cy, cz, e) in chunks_to_remove {
commands.entity(e).despawn();
chunk_entities.map.remove(&(cx, cy, cz));
}
// 2) LOAD new in-range chunks with nearest-first ordering.
let camera_cx = ((camera_pos.x - octree_offset.x) / chunk_world_size).floor() as i32;
let camera_cy = ((camera_pos.y - octree_offset.y) / chunk_world_size).floor() as i32;
let camera_cz = ((camera_pos.z - octree_offset.z) / chunk_world_size).floor() as i32;
let half_chunks = (CHUNK_RENDER_DISTANCE / chunk_world_size as f64).ceil() as i32;
let mut new_chunks_to_spawn = Vec::new();
for dx in -half_chunks..=half_chunks {
for dy in -half_chunks..=half_chunks {
for dz in -half_chunks..=half_chunks {
let cc = (camera_cx + dx, camera_cy + dy, camera_cz + dz);
if !chunk_entities.map.contains_key(&cc) {
let chunk_min = Vec3::new(
cc.0 as f32 * chunk_world_size,
cc.1 as f32 * chunk_world_size,
cc.2 as f32 * chunk_world_size,
);
let chunk_center = chunk_min + Vec3::splat(chunk_world_size * 0.5);
let final_center = octree_offset + chunk_center;
let dist = camera_pos.distance(final_center);
if dist <= CHUNK_RENDER_DISTANCE as f32 {
new_chunks_to_spawn.push(cc);
}
}
}
}
}
// Sort candidate chunks by distance (nearest first).
new_chunks_to_spawn.sort_by(|a, b| {
let pos_a = octree_offset
+ Vec3::new(
a.0 as f32 * chunk_world_size,
a.1 as f32 * chunk_world_size,
a.2 as f32 * chunk_world_size,
)
+ Vec3::splat(chunk_world_size * 0.5);
let pos_b = octree_offset
+ Vec3::new(
b.0 as f32 * chunk_world_size,
b.1 as f32 * chunk_world_size,
b.2 as f32 * chunk_world_size,
)
+ Vec3::splat(chunk_world_size * 0.5);
camera_pos
.distance(pos_a)
.partial_cmp(&camera_pos.distance(pos_b))
.unwrap()
});
let build_budget = 5; // Maximum chunks to build per frame.
let mut spawn_count = 0;
for cc in new_chunks_to_spawn {
if spawn_count >= build_budget {
break;
}
// Compute chunk's world position.
let chunk_min = Vec3::new(
cc.0 as f32 * chunk_world_size,
cc.1 as f32 * chunk_world_size,
cc.2 as f32 * chunk_world_size,
);
let chunk_center = chunk_min + Vec3::splat(chunk_world_size * 0.5);
// Check if this chunk has any voxels.
if let Some(chunk_node) =
octree.get_chunk_node(chunk_center.x as f64, chunk_center.y as f64, chunk_center.z as f64)
{
if octree.has_volume(chunk_node) {
info!("Loading chunk at: {},{},{} (has volume)", cc.0, cc.1, cc.2);
}
}
build_and_spawn_chunk(
&mut commands,
&octree,
&mut meshes,
&mut materials,
&mut chunk_entities,
cc,
octree_offset,
);
spawn_count += 1;
}
// 3) Rebuild dirty chunks (if any) with nearest-first ordering and budget.
if !octree.dirty_chunks.is_empty() {
let mut dirty = octree.dirty_chunks.drain().collect::<Vec<_>>();
dirty.sort_by(|a, b| {
let pos_a = octree_offset
+ Vec3::new(
a.0 as f32 * chunk_world_size,
a.1 as f32 * chunk_world_size,
a.2 as f32 * chunk_world_size,
)
+ Vec3::splat(chunk_world_size * 0.5);
let pos_b = octree_offset
+ Vec3::new(
b.0 as f32 * chunk_world_size,
b.1 as f32 * chunk_world_size,
b.2 as f32 * chunk_world_size,
)
+ Vec3::splat(chunk_world_size * 0.5);
camera_pos
.distance(pos_a)
.partial_cmp(&camera_pos.distance(pos_b))
.unwrap()
});
let mut rebuild_count = 0;
for chunk_coord in dirty {
if rebuild_count >= build_budget {
octree.dirty_chunks.insert(chunk_coord);
continue;
}
let chunk_min = Vec3::new(
chunk_coord.0 as f32 * chunk_world_size,
chunk_coord.1 as f32 * chunk_world_size,
chunk_coord.2 as f32 * chunk_world_size,
);
let chunk_center = chunk_min + Vec3::splat(chunk_world_size * 0.5);
let final_center = octree_offset + chunk_center;
let dist = camera_pos.distance(final_center);
if dist <= CHUNK_RENDER_DISTANCE as f32 {
if let Some(chunk_node) =
octree.get_chunk_node(chunk_center.x as f64, chunk_center.y as f64, chunk_center.z as f64)
{
if octree.has_volume(chunk_node) {
info!(
"Rebuilding chunk at: {},{},{} (has volume)",
chunk_coord.0, chunk_coord.1, chunk_coord.2
);
}
}
if let Some(e) = chunk_entities.map.remove(&chunk_coord) {
commands.entity(e).despawn();
}
build_and_spawn_chunk(
&mut commands,
&octree,
&mut meshes,
&mut materials,
&mut chunk_entities,
chunk_coord,
octree_offset,
);
rebuild_count += 1;
} else {
if let Some(e) = chunk_entities.map.remove(&chunk_coord) {
commands.entity(e).despawn();
}
}
}
}
}
fn build_and_spawn_chunk(
commands: &mut Commands,
octree: &SparseVoxelOctree,
meshes: &mut ResMut<Assets<Mesh>>,
materials: &mut ResMut<Assets<StandardMaterial>>,
chunk_entities: &mut ChunkEntities,
chunk_coord: (i32, i32, i32),
octree_offset: Vec3,
) {
let face_meshes = build_chunk_geometry(octree, chunk_coord);
if face_meshes.is_empty() {
return;
}
let merged = merge_meshes(face_meshes);
let mesh_handle = meshes.add(merged);
let step = octree.get_spacing_at_depth(octree.max_depth);
let chunk_world_size = octree.get_chunk_size() as f64 * step;
let chunk_min = Vec3::new(
chunk_coord.0 as f32 * chunk_world_size as f32,
chunk_coord.1 as f32 * chunk_world_size as f32,
chunk_coord.2 as f32 * chunk_world_size as f32,
);
let final_pos = octree_offset + chunk_min;
let e = commands.spawn((
PbrBundle {
mesh: mesh_handle.into(),
material: materials.add(StandardMaterial {
base_color: Color::rgb(0.8, 0.7, 0.6),
..default()
}).into(),
transform: Transform::from_translation(final_pos),
..default()
},
VoxelTerrainMarker,
DoubleTransform {
translation: DVec3::from(final_pos),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
))
.id();
chunk_entities.map.insert(chunk_coord, e);
}
fn build_chunk_geometry(
octree: &SparseVoxelOctree,
(cx, cy, cz): (i32, i32, i32),
) -> Vec<Mesh> {
let mut face_meshes = Vec::new();
// step in world units for one voxel at max_depth
let step = octree.get_spacing_at_depth(octree.max_depth);
let chunk_size = octree.get_chunk_size();
// chunk is 16 voxels => chunk_min in world space:
let chunk_min_x = cx as f64 * (chunk_size as f64 * step);
let chunk_min_y = cy as f64 * (chunk_size as f64 * step);
let chunk_min_z = cz as f64 * (chunk_size as f64 * step);
// for local offset
let chunk_min_f32 = Vec3::new(
chunk_min_x as f32,
chunk_min_y as f32,
chunk_min_z as f32,
);
let voxel_size_f = step as f32;
// i in [0..16] => corner is chunk_min_x + i*step
// no +0.5 => corners approach
for i in 0..chunk_size {
let vx = chunk_min_x + i as f64 * step;
for j in 0..chunk_size {
let vy = chunk_min_y + j as f64 * step;
for k in 0..chunk_size {
let vz = chunk_min_z + k as f64 * step;
// check if we have a voxel at that corner
if let Some(_) = octree.get_voxel_at_world_coords(vx, vy, vz) {
// check neighbors
for &(dx, dy, dz) in NEIGHBOR_OFFSETS.iter() {
let nx = vx + dx as f64 * step;
let ny = vy + dy as f64 * step;
let nz = vz + dz as f64 * step;
if octree.get_voxel_at_world_coords(nx, ny, nz).is_none() {
let (normal, local_offset) = crate::systems::voxels::helper::face_orientation(dx, dy, dz, voxel_size_f);
// The voxel corner in chunk-local coords
let voxel_corner_local = Vec3::new(vx as f32, vy as f32, vz as f32)
- chunk_min_f32;
// generate face
// e.g. center might be the corner + 0.5 offset, or
// we can just treat the corner as the "center" in your face calc
// but let's do it carefully:
let face_center_local = voxel_corner_local + Vec3::splat(voxel_size_f*0.5);
let face_mesh = generate_face(
normal,
local_offset,
face_center_local,
voxel_size_f / 2.0,
);
face_meshes.push(face_mesh);
}
}
}
}
}
}
face_meshes
}
fn generate_face(orientation: Vec3, local_position: Vec3, position: Vec3, face_size: f32) -> Mesh { fn generate_face(orientation: Vec3, local_position: Vec3, position: Vec3, face_size: f32) -> Mesh {
// Initialize an empty mesh with triangle topology // Initialize an empty mesh with triangle topology
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::default()); let mut mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::default());

View File

@ -28,28 +28,13 @@ pub struct SparseVoxelOctree {
#[reflect(ignore)] #[reflect(ignore)]
pub root: OctreeNode, pub root: OctreeNode,
pub max_depth: u32, pub max_depth: u32,
pub size: f64, pub size: f32,
pub show_wireframe: bool, pub show_wireframe: bool,
pub show_world_grid: bool, pub show_world_grid: bool,
pub show_chunks: bool, pub show_chunks: bool,
pub dirty_chunks: HashSet<(i32, i32, i32)>, pub dirty: bool,
} }
#[derive(Default, Resource, Reflect)]
pub struct ChunkEntities {
pub map: HashMap<(i32, i32, i32), Entity>,
}
#[derive(Component)]
pub struct ChunkMarker {
pub(crate) chunk_coords: (i64, i64, i64),
}
pub const CHUNK_RENDER_DISTANCE: f64 = 12.0;
pub const CHUNK_BUILD_BUDGET: usize = 10;
impl OctreeNode { impl OctreeNode {
/// Creates a new empty octree node. /// Creates a new empty octree node.
pub fn new() -> Self { pub fn new() -> Self {
@ -76,7 +61,7 @@ impl Voxel {
} }
pub const NEIGHBOR_OFFSETS: [(f64, f64, f64); 6] = [ pub const NEIGHBOR_OFFSETS: [(f32, f32, f32); 6] = [
(-1.0, 0.0, 0.0), // Left (-1.0, 0.0, 0.0), // Left
(1.0, 0.0, 0.0), // Right (1.0, 0.0, 0.0), // Right
(0.0, -1.0, 0.0), // Down (0.0, -1.0, 0.0), // Down
@ -85,14 +70,6 @@ pub const NEIGHBOR_OFFSETS: [(f64, f64, f64); 6] = [
(0.0, 0.0, 1.0), // Front (0.0, 0.0, 1.0), // Front
]; ];
pub const CHUNK_NEIGHBOR_OFFSETS: [(i32, i32, i32); 6] = [
(-1, 0, 0),
(1, 0, 0),
(0, -1, 0),
(0, 1, 0),
(0, 0, -1),
(0, 0, 1),
];
#[derive(Debug)] #[derive(Debug)]
pub struct Ray { pub struct Ray {