Initial commit

This commit is contained in:
Elias Stepanik 2025-02-08 18:03:00 +01:00
commit 3845538d92
25 changed files with 3139 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/target

14
Cargo.toml Normal file
View File

@ -0,0 +1,14 @@
[package]
name = "voxel-engine"
version = "0.1.0"
edition = "2021"
[dependencies]
bevy = { version = "0.15.1", features = ["jpeg", "trace_tracy", "trace_tracy_memory"] }
bevy_egui = "0.31.1"
bevy_asset = "0.15.0"
bevy-inspector-egui = "0.28.0"
bevy_reflect = "0.15.0"
bevy_render = "0.15.0"
bevy_window = "0.15.0"
egui_dock = "0.14.0"

Binary file not shown.

1
combine.sh Normal file
View File

@ -0,0 +1 @@
find src/ -type f -exec cat {} + > target/combined.txt

82
src/app.rs Normal file
View File

@ -0,0 +1,82 @@
use bevy::prelude::*;
use bevy_egui::EguiSet;
use crate::helper::debug_gizmos::debug_gizmos;
use crate::helper::egui_dock::{reset_camera_viewport, set_camera_viewport, set_gizmo_mode, show_ui_system, UiState};
use crate::helper::large_transform::DoubleTransform;
pub struct AppPlugin;
#[derive(Resource, Debug)]
pub struct InspectorVisible(pub bool);
impl Default for InspectorVisible {
fn default() -> Self {
InspectorVisible(false)
}
}
impl Plugin for AppPlugin {
fn build(&self, app: &mut App) {
app.insert_resource(UiState::new());
app.insert_resource(InspectorVisible(true));
app.add_plugins(crate::plugins::camera_plugin::CameraPlugin);
app.add_plugins(crate::plugins::ui_plugin::UiPlugin);
app.add_plugins(crate::plugins::environment_plugin::EnvironmentPlugin);
app.add_plugins(crate::plugins::large_transform_plugin::LargeTransformPlugin);
app.add_systems(Update, (debug_gizmos, toggle_ui_system));
app.add_systems(
PostUpdate,
show_ui_system
.before(EguiSet::ProcessOutput)
.before(bevy_egui::systems::end_pass_system)
.before(TransformSystem::TransformPropagate)
.run_if(should_display_inspector),
);
app.add_systems(PostUpdate, (set_camera_viewport.after(show_ui_system).run_if(should_display_inspector), reset_camera_viewport.run_if(should_not_display_inspector).after(set_camera_viewport)));
app.add_systems(Update, set_gizmo_mode);
app.register_type::<Option<Handle<Image>>>();
app.register_type::<AlphaMode>();
app.register_type::<DoubleTransform>();
}
}
fn toggle_ui_system(
keyboard_input: Res<ButtonInput<KeyCode>>,
mut inspector_visible: ResMut<InspectorVisible>,
){
// =======================
// 6) Hide Inspector
// =======================
if keyboard_input.just_pressed(KeyCode::F1) {
inspector_visible.0 = !inspector_visible.0
}
}
fn should_display_inspector(inspector_visible: Res<InspectorVisible>) -> bool {
inspector_visible.0
}
fn should_not_display_inspector(inspector_visible: Res<InspectorVisible>) -> bool {
!inspector_visible.0
}

View File

@ -0,0 +1,21 @@
use bevy::color::palettes::css::{BLUE, GREEN, RED};
use bevy::prelude::*;
pub fn debug_gizmos(mut gizmos: Gizmos) {
/* // Draw a line
gizmos.line(
Vec3::ZERO,
Vec3::new(1.0, 1.0, 1.0),
RED,
);
// Draw a sphere
gizmos.sphere(Vec3::new(2.0, 2.0, 2.0), 0.5, BLUE);
// Draw a wireframe cube
gizmos.rect(Isometry3d::IDENTITY, Vec2::ONE, GREEN);*/
}

343
src/helper/egui_dock.rs Normal file
View File

@ -0,0 +1,343 @@
use bevy::prelude::*;
use bevy_asset::{ReflectAsset, UntypedAssetId};
use bevy_egui::{egui, EguiContext};
use bevy_inspector_egui::bevy_inspector::hierarchy::{hierarchy_ui, SelectedEntities};
use bevy_inspector_egui::bevy_inspector::{
self, ui_for_entities_shared_components, ui_for_entity_with_children,
};
use std::any::TypeId;
use bevy_reflect::TypeRegistry;
use bevy_render::camera::{CameraProjection, Viewport};
use bevy_window::{PrimaryWindow, Window};
use egui_dock::{DockArea, DockState, NodeIndex, Style};
#[cfg(egui_dock_gizmo)]
use transform_gizmo_egui::GizmoMode;
/// Placeholder type if gizmo is disabled.
#[cfg(not(egui_dock_gizmo))]
#[derive(Clone, Copy)]
pub struct GizmoMode;
#[derive(Component)]
pub struct MainCamera;
pub fn show_ui_system(world: &mut World) {
let Ok(egui_context) = world
.query_filtered::<&mut EguiContext, With<PrimaryWindow>>()
.get_single(world)
else {
return;
};
let mut egui_context = egui_context.clone();
world.resource_scope::<UiState, _>(|world, mut ui_state| {
ui_state.ui(world, egui_context.get_mut())
});
}
// make camera only render to view not obpub structed by UI
pub fn set_camera_viewport(
ui_state: Res<UiState>,
primary_window: Query<&mut Window, With<PrimaryWindow>>,
egui_settings: Query<&bevy_egui::EguiSettings>,
mut cameras: Query<&mut Camera, With<MainCamera>>,
) {
let mut cam = cameras.single_mut();
let Ok(window) = primary_window.get_single() else {
return;
};
let scale_factor = window.scale_factor() * egui_settings.single().scale_factor;
let viewport_pos = ui_state.viewport_rect.left_top().to_vec2() * scale_factor;
let viewport_size = ui_state.viewport_rect.size() * scale_factor;
let physical_position = UVec2::new(viewport_pos.x as u32, viewport_pos.y as u32);
let physical_size = UVec2::new(viewport_size.x as u32, viewport_size.y as u32);
// The desired viewport rectangle at its offset in "physical pixel space"
let rect = physical_position + physical_size;
let window_size = window.physical_size();
// wgpu will panic if trying to set a viewport rect which has coordinates extending
// past the size of the render target, i.e. the physical window in our case.
// Typically this shouldn't happen- but during init and resizing etc. edge cases might occur.
// Simply do nothing in those cases.
if rect.x <= window_size.x && rect.y <= window_size.y {
cam.viewport = Some(Viewport {
physical_position,
physical_size,
depth: 0.0..1.0,
});
}
}
pub fn reset_camera_viewport(mut cameras: Query<&mut Camera, With<MainCamera>>) {
if let Ok(mut cam) = cameras.get_single_mut() {
cam.viewport = None; // Reset the viewport to its default state
}
}
pub fn set_gizmo_mode(input: Res<ButtonInput<KeyCode>>, mut ui_state: ResMut<UiState>) {
#[cfg(egui_dock_gizmo)]
let keybinds = [
(KeyCode::KeyR, GizmoMode::Rotate),
(KeyCode::KeyT, GizmoMode::Translate),
(KeyCode::KeyS, GizmoMode::Scale),
];
#[cfg(not(egui_dock_gizmo))]
let keybinds = [];
for (key, mode) in keybinds {
if input.just_pressed(key) {
ui_state.gizmo_mode = mode;
}
}
}
#[derive(Eq, PartialEq)]
pub enum InspectorSelection {
Entities,
Resource(TypeId, String),
Asset(TypeId, String, UntypedAssetId),
}
#[derive(Resource)]
pub struct UiState {
state: DockState<EguiWindow>,
viewport_rect: egui::Rect,
selected_entities: SelectedEntities,
selection: InspectorSelection,
gizmo_mode: GizmoMode,
}
impl UiState {
pub fn new() -> Self {
let mut state = DockState::new(vec![EguiWindow::GameView]);
let tree = state.main_surface_mut();
let [game, _inspector] =
tree.split_right(NodeIndex::root(), 0.75, vec![EguiWindow::Inspector]);
let [game, _hierarchy] = tree.split_left(game, 0.2, vec![EguiWindow::Hierarchy]);
let [_game, _bottom] =
tree.split_below(game, 0.8, vec![EguiWindow::Resources, EguiWindow::Assets]);
Self {
state,
selected_entities: SelectedEntities::default(),
selection: InspectorSelection::Entities,
viewport_rect: egui::Rect::NOTHING,
#[cfg(egui_dock_gizmo)]
gizmo_mode: GizmoMode::Translate,
#[cfg(not(egui_dock_gizmo))]
gizmo_mode: GizmoMode,
}
}
pub fn ui(&mut self, world: &mut World, ctx: &mut egui::Context) {
let mut tab_viewer = TabViewer {
world,
viewport_rect: &mut self.viewport_rect,
selected_entities: &mut self.selected_entities,
selection: &mut self.selection,
gizmo_mode: self.gizmo_mode,
};
DockArea::new(&mut self.state)
.style(Style::from_egui(ctx.style().as_ref()))
.show(ctx, &mut tab_viewer);
}
}
#[derive(Debug)]
pub enum EguiWindow {
GameView,
Hierarchy,
Resources,
Assets,
Inspector,
}
pub struct TabViewer<'a> {
world: &'a mut World,
selected_entities: &'a mut SelectedEntities,
selection: &'a mut InspectorSelection,
viewport_rect: &'a mut egui::Rect,
gizmo_mode: GizmoMode,
}
impl egui_dock::TabViewer for TabViewer<'_> {
type Tab = EguiWindow;
fn ui(&mut self, ui: &mut egui_dock::egui::Ui, window: &mut Self::Tab) {
let type_registry = self.world.resource::<AppTypeRegistry>().0.clone();
let type_registry = type_registry.read();
match window {
EguiWindow::GameView => {
*self.viewport_rect = ui.clip_rect();
draw_gizmo(ui, self.world, self.selected_entities, self.gizmo_mode);
}
EguiWindow::Hierarchy => {
let selected = hierarchy_ui(self.world, ui, self.selected_entities);
if selected {
*self.selection = InspectorSelection::Entities;
}
}
EguiWindow::Resources => select_resource(ui, &type_registry, self.selection),
EguiWindow::Assets => select_asset(ui, &type_registry, self.world, self.selection),
EguiWindow::Inspector => match *self.selection {
InspectorSelection::Entities => match self.selected_entities.as_slice() {
&[entity] => ui_for_entity_with_children(self.world, entity, ui),
entities => ui_for_entities_shared_components(self.world, entities, ui),
},
InspectorSelection::Resource(type_id, ref name) => {
ui.label(name);
bevy_inspector::by_type_id::ui_for_resource(
self.world,
type_id,
ui,
name,
&type_registry,
)
}
InspectorSelection::Asset(type_id, ref name, handle) => {
ui.label(name);
bevy_inspector::by_type_id::ui_for_asset(
self.world,
type_id,
handle,
ui,
&type_registry,
);
}
},
}
}
fn title(&mut self, window: &mut Self::Tab) -> egui_dock::egui::WidgetText {
format!("{window:?}").into()
}
fn clear_background(&self, window: &Self::Tab) -> bool {
!matches!(window, EguiWindow::GameView)
}
}
#[allow(unused)]
pub fn draw_gizmo(
ui: &mut egui::Ui,
world: &mut World,
selected_entities: &SelectedEntities,
gizmo_mode: GizmoMode,
) {
let (cam_transform, projection) = world
.query_filtered::<(&GlobalTransform, &Projection), With<MainCamera>>()
.single(world);
let view_matrix = Mat4::from(cam_transform.affine().inverse());
let projection_matrix = projection.get_clip_from_view();
if selected_entities.len() != 1 {
#[allow(clippy::needless_return)]
return;
}
/*for selected in selected_entities.iter() {
let Some(transform) = world.get::<Transform>(selected) else {
continue;
};
let model_matrix = transform.compute_matrix();
let mut gizmo = Gizmo::new(GizmoConfig {
view_matrix: view_matrix.into(),
projection_matrix: projection_matrix.into(),
orientation: GizmoOrientation::Local,
modes: EnumSet::from(gizmo_mode),
..Default::default()
});
let Some([result]) = gizmo
.interact(ui, model_matrix.into())
.map(|(_, res)| res.as_slice())
else {
continue;
};
let mut transform = world.get_mut::<Transform>(selected).unwrap();
transform = Transform {
translation: Vec3::from(<[f64; 3]>::from(result.translation)),
rotation: Quat::from_array(<[f64; 4]>::from(result.rotation)),
scale: Vec3::from(<[f64; 3]>::from(result.scale)),
};
}*/
}
pub fn select_resource(
ui: &mut egui::Ui,
type_registry: &TypeRegistry,
selection: &mut InspectorSelection,
) {
let mut resources: Vec<_> = type_registry
.iter()
.filter(|registration| registration.data::<ReflectResource>().is_some())
.map(|registration| {
(
registration.type_info().type_path_table().short_path(),
registration.type_id(),
)
})
.collect();
resources.sort_by(|(name_a, _), (name_b, _)| name_a.cmp(name_b));
for (resource_name, type_id) in resources {
let selected = match *selection {
InspectorSelection::Resource(selected, _) => selected == type_id,
_ => false,
};
if ui.selectable_label(selected, resource_name).clicked() {
*selection = InspectorSelection::Resource(type_id, resource_name.to_string());
}
debug!("{}", resource_name);
}
}
pub fn select_asset(
ui: &mut egui::Ui,
type_registry: &TypeRegistry,
world: &World,
selection: &mut InspectorSelection,
) {
let mut assets: Vec<_> = type_registry
.iter()
.filter_map(|registration| {
let reflect_asset = registration.data::<ReflectAsset>()?;
Some((
registration.type_info().type_path_table().short_path(),
registration.type_id(),
reflect_asset,
))
})
.collect();
assets.sort_by(|(name_a, ..), (name_b, ..)| name_a.cmp(name_b));
for (asset_name, asset_type_id, reflect_asset) in assets {
let handles: Vec<_> = reflect_asset.ids(world).collect();
ui.collapsing(format!("{asset_name} ({})", handles.len()), |ui| {
for handle in handles {
let selected = match *selection {
InspectorSelection::Asset(_, _, selected_id) => selected_id == handle,
_ => false,
};
if ui
.selectable_label(selected, format!("{:?}", handle))
.clicked()
{
*selection =
InspectorSelection::Asset(asset_type_id, asset_name.to_string(), handle);
}
}
});
}
}

View File

@ -0,0 +1,103 @@
use bevy::math::{DQuat, DVec3};
use bevy::prelude::{Commands, Component, GlobalTransform, Query, Reflect, Res, ResMut, Resource, Transform, With, Without};
use bevy_render::prelude::Camera;
#[derive(Resource, Reflect,Default)]
pub struct WorldOffset(pub DVec3);
#[derive(Component, Default,Reflect)]
pub struct DoubleTransform {
pub translation: DVec3,
pub rotation: DQuat,
pub scale: DVec3,
}
impl DoubleTransform {
pub fn new(translation: DVec3, rotation: DQuat, scale: DVec3) -> Self {
Self {
translation,
rotation,
scale,
}
}
/// Returns a unit vector pointing "forward" (negative-Z) based on the rotation
pub fn forward(&self) -> DVec3 {
self.rotation * DVec3::new(0.0, 0.0, -1.0)
}
/// Returns a unit vector pointing "right" (positive-X)
pub fn right(&self) -> DVec3 {
self.rotation * DVec3::new(1.0, 0.0, 0.0)
}
/// Returns a unit vector pointing "up" (positive-Y)
pub fn up(&self) -> DVec3 {
self.rotation * DVec3::new(0.0, 1.0, 0.0)
}
pub fn down(&self) -> DVec3 {
self.rotation * DVec3::new(0.0, -1.0, 0.0)
}
}
pub(crate) fn get_true_world_position(
offset: &WorldOffset,
transform: &DoubleTransform,
) -> DVec3 {
transform.translation + offset.0
}
pub fn setup(mut commands: Commands) {
commands
.spawn((
DoubleTransform {
translation: DVec3::new(100_000.0, 0.0, 0.0),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
// The standard Bevy Transform (will be updated each frame)
Transform::default(),
GlobalTransform::default(),
// Add your mesh/visibility components, etc.
));
}
pub fn update_render_transform_system(
camera_query: Query<&DoubleTransform, With<Camera>>,
mut query: Query<(&DoubleTransform, &mut Transform), Without<Camera>>,
) {
let camera_double_tf = camera_query.single();
// The camera offset in double-precision
let camera_pos = camera_double_tf.translation;
for (double_tf, mut transform) in query.iter_mut() {
// relative position (double precision)
let relative_pos = double_tf.translation - camera_pos;
transform.translation = relative_pos.as_vec3(); // convert f64 -> f32
transform.rotation = double_tf.rotation.as_quat(); // f64 -> f32
transform.scale = double_tf.scale.as_vec3(); // f64 -> f32
}
}
pub fn floating_origin_system(
mut query: Query<&mut DoubleTransform, Without<Camera>>,
mut camera_query: Query<&mut DoubleTransform, With<Camera>>,
mut offset: ResMut<WorldOffset>,
) {
let mut camera_tf = camera_query.single_mut();
let camera_pos = camera_tf.translation;
// If the camera moves any distance, recenter it
if camera_pos.length() > 0.001 {
offset.0 += camera_pos;
// Shift everything so camera ends up back at zero
for mut dtf in query.iter_mut() {
dtf.translation -= camera_pos;
}
camera_tf.translation = DVec3::ZERO;
}
}

3
src/helper/mod.rs Normal file
View File

@ -0,0 +1,3 @@
pub mod egui_dock;
pub mod debug_gizmos;
pub mod large_transform;

89
src/main.rs Normal file
View File

@ -0,0 +1,89 @@
mod systems;
mod plugins;
mod app;
mod helper;
use bevy::DefaultPlugins;
use bevy::gizmos::{AppGizmoBuilder, GizmoPlugin};
use bevy::log::info;
use bevy::prelude::{default, App, GizmoConfigGroup, PluginGroup, Reflect, Res, Resource};
use bevy::render::RenderPlugin;
use bevy::render::settings::{Backends, RenderCreation, WgpuSettings};
use bevy_egui::{EguiPlugin};
use bevy_inspector_egui::DefaultInspectorConfigPlugin;
use bevy_window::{PresentMode, Window, WindowPlugin};
use crate::app::AppPlugin;
const TITLE: &str = "Fluid Simulation";
const RESOLUTION: (f32,f32) = (1920f32, 1080f32);
const RESIZABLE: bool = true;
const DECORATIONS: bool = true;
const TRANSPARENT: bool = true;
const PRESENT_MODE: PresentMode = PresentMode::AutoVsync;
fn main() {
let mut app = App::new();
register_platform_plugins(&mut app);
app.add_plugins(AppPlugin);
app.add_plugins(EguiPlugin);
app.add_plugins(DefaultInspectorConfigPlugin);
/*app.add_plugins(GizmoPlugin);*/
app.run();
}
#[derive(Resource)]
pub struct InspectorVisible(bool);
fn register_platform_plugins(app: &mut App) {
#[cfg(target_os = "windows")]
{
// Register Windows-specific plugins
info!("Adding Windows-specific plugins");
app.add_plugins(DefaultPlugins
.set(RenderPlugin {
render_creation: RenderCreation::Automatic(WgpuSettings {
backends: Some(Backends::VULKAN),
..default()
}),
..default()
})
.set(WindowPlugin {
primary_window: Some(Window {
title: TITLE.to_string(), // Window title
resolution: RESOLUTION.into(), // Initial resolution (width x height)
resizable: RESIZABLE, // Allow resizing
decorations: DECORATIONS, // Enable window decorations
transparent: TRANSPARENT, // Opaque background
present_mode: PRESENT_MODE, // VSync mode
..default()
}),
..default()
})
);
}
#[cfg(target_os = "macos")]
{
info!("Adding macOS-specific plugins");
app.add_plugins(DefaultPlugins)
.set(WindowPlugin {
primary_window: Some(Window {
title: crate::TITLE.to_string(), // Window title
resolution: crate::RESOLUTION.into(), // Initial resolution (width x height)
resizable: crate::RESIZABLE, // Allow resizing
decorations: crate::DECORATIONS, // Enable window decorations
transparent: crate::TRANSPARENT, // Opaque background
present_mode: crate::PRESENT_MODE, // VSync mode
..default()
}),
..default()
});
}
}
fn should_display_inspector(inspector_visible: Res<InspectorVisible>) -> bool {
inspector_visible.0
}

View File

@ -0,0 +1,12 @@
use bevy::a11y::AccessibilitySystem::Update;
use bevy::app::{App, Plugin, PreUpdate, Startup};
pub struct CameraPlugin;
impl Plugin for CameraPlugin {
fn build(&self, app: &mut App) {
app.add_systems(Startup, (crate::systems::camera_system::setup));
app.add_systems(PreUpdate, (crate::systems::camera_system::camera_controller_system));
}
}

View File

@ -0,0 +1,37 @@
use std::fs::create_dir;
use bevy::app::{App, Plugin, PreUpdate, Startup};
use bevy::color::palettes::css::{GRAY, RED};
use bevy::prelude::{default, Color, Commands, GlobalTransform, IntoSystemConfigs, Query, Res, Update};
use bevy_render::prelude::ClearColor;
use crate::app::InspectorVisible;
use crate::systems::environment_system::*;
use crate::systems::voxels::structure::{ChunkEntities, SparseVoxelOctree, Voxel};
pub struct EnvironmentPlugin;
impl Plugin for EnvironmentPlugin {
fn build(&self, app: &mut App) {
/*app.insert_resource(ClearColor(Color::from(GRAY)));*/
app.init_resource::<ChunkEntities>();
app.add_systems(Startup, (setup).chain());
app.add_systems(Update, (crate::systems::voxels::rendering::render,crate::systems::voxels::debug::visualize_octree.run_if(should_visualize_octree), crate::systems::voxels::debug::draw_grid.run_if(should_draw_grid), crate::systems::voxels::debug::debug_draw_chunks_system.run_if(should_visualize_chunks)).chain());
app.register_type::<SparseVoxelOctree>();
app.register_type::<ChunkEntities>();
}
}
fn should_visualize_octree(octree_query: Query<&SparseVoxelOctree>,) -> bool {
octree_query.single().show_wireframe
}
fn should_draw_grid(octree_query: Query<&SparseVoxelOctree>,) -> bool {
octree_query.single().show_world_grid
}
fn should_visualize_chunks(octree_query: Query<&SparseVoxelOctree>,) -> bool {
octree_query.single().show_chunks
}

View File

@ -0,0 +1,17 @@
use bevy::app::{App, Plugin, PreUpdate, Startup, Update};
use bevy::prelude::IntoSystemConfigs;
use crate::helper::large_transform::*;
pub struct LargeTransformPlugin;
impl Plugin for LargeTransformPlugin {
fn build(&self, app: &mut App) {
app.insert_resource(WorldOffset::default());
app.add_systems(Startup, setup);
app.add_systems(Update, floating_origin_system.after(crate::systems::camera_system::camera_controller_system));
app.add_systems(Update, update_render_transform_system.after(floating_origin_system));
}
}

5
src/plugins/mod.rs Normal file
View File

@ -0,0 +1,5 @@
pub mod large_transform_plugin;
pub mod camera_plugin;
pub mod ui_plugin;
pub mod environment_plugin;

15
src/plugins/ui_plugin.rs Normal file
View File

@ -0,0 +1,15 @@
use bevy::app::{App, FixedUpdate, Plugin, PreUpdate, Startup};
use bevy::prelude::IntoSystemConfigs;
use crate::systems::ui_system::*;
pub struct UiPlugin;
impl Plugin for UiPlugin {
fn build(&self, app: &mut App) {
app.add_systems(Startup, setup);
app.add_systems(FixedUpdate, update);
}
}

View File

@ -0,0 +1,318 @@
use bevy::color::palettes::basic::{BLUE, GREEN};
use bevy::input::mouse::{MouseMotion, MouseWheel};
use bevy::math::{DQuat, DVec3, Vec3};
use bevy::prelude::*;
use bevy_render::camera::{OrthographicProjection, Projection, ScalingMode};
use bevy_window::CursorGrabMode;
use crate::helper::egui_dock::MainCamera;
use crate::helper::large_transform::{DoubleTransform, WorldOffset};
use crate::InspectorVisible;
use crate::systems::voxels::structure::{Ray, SparseVoxelOctree, Voxel};
#[derive(Component)]
pub struct CameraController {
pub yaw: f32,
pub pitch: f32,
pub speed: f32,
pub sensitivity: f32,
}
impl Default for CameraController {
fn default() -> Self {
Self {
yaw: 0.0,
pitch: 0.0,
speed: 10.0,
sensitivity: 0.1,
}
}
}
pub fn setup(mut commands: Commands,){
commands.spawn((
DoubleTransform {
translation: DVec3::new(0.0, 0.0, 10.0),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
Transform::from_xyz(0.0, 5.0, 10.0), // initial f32
GlobalTransform::default(),
Camera3d::default(),
Projection::from(PerspectiveProjection{
near: 0.0001,
..default()
}),
MainCamera,
CameraController::default()
));
}
/// Example system to control a camera using double-precision for position.
pub fn camera_controller_system(
time: Res<Time>,
keyboard_input: Res<ButtonInput<KeyCode>>,
mouse_button_input: Res<ButtonInput<MouseButton>>,
mut mouse_motion_events: EventReader<MouseMotion>,
mut mouse_wheel_events: EventReader<MouseWheel>,
mut windows: Query<&mut Window>,
// Here we query for BOTH DoubleTransform (f64) and Transform (f32).
// We'll update DoubleTransform for the "true" position
// and keep Transform in sync for rendering.a
mut query: Query<(&mut DoubleTransform, &mut Transform, &mut CameraController)>,
mut octree_query: Query<&mut SparseVoxelOctree>,
mut app_exit_events: EventWriter<AppExit>,
world_offset: Res<WorldOffset>,
) {
let mut window = windows.single_mut();
let (mut double_tf, mut render_tf, mut controller) = query.single_mut();
// ====================
// 1) Handle Mouse Look
// ====================
if !window.cursor_options.visible {
for event in mouse_motion_events.read() {
// Adjust yaw/pitch in f32
controller.yaw -= event.delta.x * controller.sensitivity;
controller.pitch += event.delta.y * controller.sensitivity;
controller.pitch = controller.pitch.clamp(-89.9, 89.9);
// Convert degrees to radians (f32)
let yaw_radians = controller.yaw.to_radians();
let pitch_radians = controller.pitch.to_radians();
// Build a double-precision quaternion from those angles
let rot_yaw = DQuat::from_axis_angle(DVec3::Y, yaw_radians as f64);
let rot_pitch = DQuat::from_axis_angle(DVec3::X, -pitch_radians as f64);
double_tf.rotation = rot_yaw * rot_pitch;
}
}
// ====================
// 2) Adjust Movement Speed with Mouse Wheel
// ====================
for event in mouse_wheel_events.read() {
let base_factor = 1.1_f32;
let factor = base_factor.powf(event.y);
controller.speed *= factor;
if controller.speed < 0.01 {
controller.speed = 0.01;
}
}
// ====================
// 3) Handle Keyboard Movement (WASD, Space, Shift)
// ====================
let mut direction = DVec3::ZERO;
// Forward/Back
if keyboard_input.pressed(KeyCode::KeyW) {
direction += double_tf.forward();
}
if keyboard_input.pressed(KeyCode::KeyS) {
direction -= double_tf.forward();
}
// Left/Right
if keyboard_input.pressed(KeyCode::KeyA) {
direction -= double_tf.right();
}
if keyboard_input.pressed(KeyCode::KeyD) {
direction += double_tf.right();
}
// Up/Down
if keyboard_input.pressed(KeyCode::Space) {
direction += double_tf.up();
}
if keyboard_input.pressed(KeyCode::ShiftLeft) || keyboard_input.pressed(KeyCode::ShiftRight) {
direction -= double_tf.up();
}
// Normalize direction if needed
if direction.length_squared() > 0.0 {
direction = direction.normalize();
}
// Apply movement in double-precision
let delta_seconds = time.delta_secs_f64();
let distance = controller.speed as f64 * delta_seconds;
double_tf.translation += direction * distance;
// =========================
// 4) Lock/Unlock Mouse (L)
// =========================
if keyboard_input.just_pressed(KeyCode::KeyL) {
// Toggle between locked and unlocked
if window.cursor_options.grab_mode == CursorGrabMode::None {
// Lock
window.cursor_options.visible = false;
window.cursor_options.grab_mode = CursorGrabMode::Locked;
} else {
// Unlock
window.cursor_options.visible = true;
window.cursor_options.grab_mode = CursorGrabMode::None;
}
}
// =======================
// 5) Octree Keys
// =======================
if keyboard_input.just_pressed(KeyCode::F2){
for mut octree in octree_query.iter_mut() {
octree.show_wireframe = !octree.show_wireframe;
}
}
if keyboard_input.just_pressed(KeyCode::F3){
for mut octree in octree_query.iter_mut() {
octree.show_world_grid = !octree.show_world_grid;
}
}
if keyboard_input.just_pressed(KeyCode::F4){
for mut octree in octree_query.iter_mut() {
octree.show_chunks = !octree.show_chunks;
}
}
if keyboard_input.just_pressed(KeyCode::KeyQ) && window.cursor_options.visible == false{
for mut octree in octree_query.iter_mut() {
octree.insert(double_tf.translation.x as f64, double_tf.translation.y as f64, double_tf.translation.z as f64, Voxel::new(Color::srgb(1.0, 0.0, 0.0)));
}
}
// =======================
// 6) Building
// =======================
if (mouse_button_input.just_pressed(MouseButton::Left) || mouse_button_input.just_pressed(MouseButton::Right)) && !window.cursor_options.visible {
// Get the mouse position in normalized device coordinates (-1 to 1)
if let Some(_) = window.cursor_position() {
// Set the ray direction to the camera's forward vector
let ray_origin = world_offset.0 + double_tf.translation;
let ray_direction = double_tf.forward().normalize();
let ray = Ray {
origin: ray_origin.as_vec3(),
direction: ray_direction.as_vec3(),
};
for mut octree in octree_query.iter_mut() {
if let Some((hit_x, hit_y, hit_z, depth,normal)) = octree.raycast(&ray) {
/*//TODO: Currently broken needs fixing to work with double precision
println!("raycast: {:?}", ray);
// Visualize the ray
lines.lines.push(EphemeralLine {
start: ray_origin.as_vec3(),
end: DVec3::new(hit_x, hit_y, hit_z).as_vec3(),
color: Color::from(GREEN),
time_left: 5.0, // draw for 2 seconds
});*/
/*gizmos.ray(
ray.origin,
ray.direction,
BLUE,
);*/
let chunk = octree.compute_chunk_coords(hit_x, hit_y, hit_z);
info!("Chunk Hit: {},{},{}", chunk.0, chunk.1, chunk.2);
if let Some(chunk_node) = octree.get_chunk_node(hit_x,hit_y,hit_z) {
let has_volume = octree.has_volume(chunk_node);
info!("Chunk Has Volume: {}", has_volume);
}
if mouse_button_input.just_pressed(MouseButton::Right) {
let voxel_size = octree.get_spacing_at_depth(depth);
let hit_position = Vec3::new(hit_x as f32, hit_y as f32, hit_z as f32);
let epsilon = voxel_size * 0.1; // Adjust this value as needed (e.g., 0.1 times the voxel size)
// Offset position by epsilon in the direction of the normal
let offset_position = hit_position - (normal * Vec3::new(epsilon as f32, epsilon as f32, epsilon as f32));
// Align the offset position to the center of the nearest voxel
let (new_voxel_x, new_voxel_y, new_voxel_z) = octree.normalize_to_voxel_at_depth(
offset_position.x as f64,
offset_position.y as f64,
offset_position.z as f64,
depth,
);
// Remove the voxel
octree.remove(new_voxel_x, new_voxel_y, new_voxel_z);
}
else if mouse_button_input.just_pressed(MouseButton::Left) {
let voxel_size = octree.get_spacing_at_depth(depth);
let hit_position = Vec3::new(hit_x as f32, hit_y as f32, hit_z as f32);
let epsilon = voxel_size * 0.1; // Adjust this value as needed (e.g., 0.1 times the voxel size)
// Offset position by epsilon in the direction of the normal
let offset_position = hit_position + (normal * Vec3::new(epsilon as f32, epsilon as f32, epsilon as f32));
// Align the offset position to the center of the nearest voxel
let (new_voxel_x, new_voxel_y, new_voxel_z) = octree.normalize_to_voxel_at_depth(
offset_position.x as f64,
offset_position.y as f64,
offset_position.z as f64,
depth,
);
// Insert the new voxel
octree.insert(
new_voxel_x,
new_voxel_y,
new_voxel_z,
Voxel::new(Color::srgb(1.0, 0.0, 0.0)),
);
}
}
}
}
}
// =======================
// 7) Exit on Escape
// =======================
if keyboard_input.pressed(KeyCode::Escape) {
app_exit_events.send(Default::default());
}
// =============================================
// 8) Convert DoubleTransform -> Bevy Transform
// =============================================
// The final step is to update the f32 `Transform` that Bevy uses for rendering.
// This ensures the camera is visually placed at the correct position.
render_tf.translation = double_tf.translation.as_vec3();
render_tf.rotation = double_tf.rotation.as_quat();
render_tf.scale = double_tf.scale.as_vec3();
}

View File

@ -0,0 +1,245 @@
use bevy::color::palettes::basic::*;
use bevy::color::palettes::css::{BEIGE, MIDNIGHT_BLUE, ORANGE, ORANGE_RED, SEA_GREEN};
use bevy::math::*;
use bevy::prelude::*;
use crate::helper::large_transform::DoubleTransform;
use crate::systems::voxels::structure::{SparseVoxelOctree, Voxel};
/*pub fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
){
// 1) Circular base
commands.spawn((
// Double precision
DoubleTransform {
translation: DVec3::new(0.0, 0.0, 10.0),
// rotate -90 degrees around X so the circle is on the XY plane
rotation: DQuat::from_euler(EulerRot::XYZ, -std::f64::consts::FRAC_PI_2, 0.0, 0.0),
scale: DVec3::ONE,
},
// Bevy's transform components
Transform::default(),
GlobalTransform::default(),
// 3D mesh + material
Mesh3d(meshes.add(Circle::new(4.0))),
MeshMaterial3d(materials.add(Color::WHITE)),
));
// 2) Cube
commands.spawn((
// Double precision
DoubleTransform {
translation: DVec3::new(0.0, 0.5, 10.0),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
// Bevy's transform components
Transform::default(),
GlobalTransform::default(),
// 3D mesh + material
Mesh3d(meshes.add(Cuboid::new(1.0, 1.0, 1.0))),
MeshMaterial3d(materials.add(Color::rgb_u8(124, 144, 255))),
));
// 3) Point light
commands.spawn((
DoubleTransform {
translation: DVec3::new(4.0, 8.0, 14.0),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
Transform::default(),
GlobalTransform::default(),
PointLight {
shadows_enabled: true,
..default()
},
));
}
*/
pub fn setup(mut commands: Commands,) {
let voxels_per_unit = 16;
let unit_size = 1.0; // 1 unit in your coordinate space
let voxel_size = unit_size / voxels_per_unit as f64;
/*//Octree
let octree_base_size = 64.0;
let octree_depth = 10;*/
// Octree parameters
let octree_base_size = 64.0 * unit_size; // Octree's total size in your world space
let octree_depth = 10;
let mut octree = SparseVoxelOctree::new(octree_depth, octree_base_size, false, false, false);
let color = Color::rgb(0.2, 0.8, 0.2);
/*generate_voxel_rect(&mut octree,color);*/
/*generate_voxel_sphere(&mut octree, 10.0, color);*/
generate_large_plane(&mut octree, 200, 200,color );
/*octree.insert(0.0,0.0,0.0, Voxel::new(Color::from(RED)));*/
commands.spawn(
(
DoubleTransform {
translation: DVec3::new(0.0, 0.0, 0.0),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
Transform::default(),
octree
)
);
commands.spawn((
Transform::default(),
GlobalTransform::default(),
DoubleTransform {
translation: DVec3::new(0.0, 0.0, 0.0),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
PointLight {
shadows_enabled: true,
..default()
},
));
// Insert the octree into the ECS
}
/// Naïve function to generate a spherical planet in the voxel octree.
/// - `planet_radius`: radius of the "planet" in your world-space units
/// - `voxel_step`: how finely to sample the sphere in the x/y/z loops
fn generate_voxel_sphere(
octree: &mut SparseVoxelOctree,
planet_radius: f64,
voxel_color: Color,
) {
// For simplicity, we center the sphere around (0,0,0).
// We'll loop over a cubic region [-planet_radius, +planet_radius] in x, y, z
let min = -(planet_radius as i64);
let max = planet_radius as i64;
let step = octree.get_spacing_at_depth(octree.max_depth);
for ix in min..=max {
let x = ix as f64;
for iy in min..=max {
let y = iy as f64;
for iz in min..=max {
let z = iz as f64;
// Check if within sphere of radius `planet_radius`
let dist2 = x * x + y * y + z * z;
if dist2 <= planet_radius * planet_radius {
// Convert (x,y,z) to world space, stepping by `voxel_step`.
let wx = x * step;
let wy = y * step;
let wz = z * step;
// Insert the voxel
let voxel = Voxel {
color: voxel_color,
position: Default::default(), // Will get set internally by `insert()`
};
octree.insert(wx, wy, wz, voxel);
}
}
}
}
}
/// Inserts a 16x256x16 "column" of voxels into the octree at (0,0,0) corner.
/// If you want it offset or centered differently, just adjust the for-loop ranges or offsets.
fn generate_voxel_rect(
octree: &mut SparseVoxelOctree,
voxel_color: Color,
) {
// The dimensions of our rectangle: 16 x 256 x 16
let size_x = 16;
let size_y = 256;
let size_z = 16;
// We'll get the voxel spacing (size at the deepest level), same as in your sphere code.
let step = octree.get_spacing_at_depth(octree.max_depth);
// Triple-nested loop for each voxel in [0..16, 0..256, 0..16]
for ix in 0..size_x {
let x = ix as f64;
for iy in 0..size_y {
let y = iy as f64;
for iz in 0..size_z {
let z = iz as f64;
// Convert (x,y,z) to world coordinates
let wx = x * step;
let wy = y * step;
let wz = z * step;
// Create the voxel
let voxel = Voxel {
color: voxel_color,
position: Default::default(), // Will be set by octree internally
};
// Insert the voxel into the octree
octree.insert(wx, wy, wz, voxel);
}
}
}
}
fn generate_large_plane(
octree: &mut SparseVoxelOctree,
width: usize,
depth: usize,
color: Color,
) {
// We'll get the voxel spacing (size at the deepest level).
let step = octree.get_spacing_at_depth(octree.max_depth);
// Double-nested loop for each voxel in [0..width, 0..depth],
// with y=0.
for ix in 0..width {
let x = ix as f64;
for iz in 0..depth {
let z = iz as f64;
// y is always 0.
let y = 0.0;
// Convert (x,0,z) to world coordinates
let wx = x * step;
let wy = y * step;
let wz = z * step;
// Create the voxel
let voxel = Voxel {
color,
position: Vec3::ZERO, // Will be set internally by octree.insert()
};
// Insert the voxel into the octree
octree.insert(wx, wy, wz, voxel);
}
}
}

5
src/systems/mod.rs Normal file
View File

@ -0,0 +1,5 @@
pub mod camera_system;
pub mod ui_system;
pub mod environment_system;
pub mod voxels;

90
src/systems/ui_system.rs Normal file
View File

@ -0,0 +1,90 @@
use bevy::asset::AssetServer;
use bevy::prelude::*;
use crate::helper::large_transform::{DoubleTransform, WorldOffset};
use crate::systems::camera_system::CameraController;
use crate::systems::voxels::structure::{SparseVoxelOctree};
#[derive(Component)]
pub struct SpeedDisplay;
/// Spawns a UI Text entity to display speed/positions.
pub fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
// Use the new UI API, or the old UI Node-based system.
// This example uses an older approach to Node/Style, but can be adapted to `TextBundle`.
// If you're on Bevy 0.11+, you can also do `TextBundle::from_section(...)`.
commands.spawn((
// The text to display:
Text::new("Speed: 0.0"),
// The font, loaded from an asset file
TextFont {
font: asset_server.load("fonts/minecraft_font.ttf"),
font_size: 25.0,
..default()
},
// The text layout style
TextLayout::new_with_justify(JustifyText::Left),
// Style for positioning the UI node
Node {
position_type: PositionType::Relative,
bottom: Val::Px(9.0),
right: Val::Px(9.0),
..default()
},
// Our marker so we can query this entity
SpeedDisplay,
));
}
/// System that updates the UI text each frame with
/// - speed
/// - camera f32 position
/// - camera global f64 position
/// - current chunk coordinate
pub fn update(
// Query the camera controller so we can see its speed
query_camera_controller: Query<&CameraController>,
// We also query for the camera's f32 `Transform` and the double `DoubleTransform`
camera_query: Query<(&Transform, &DoubleTransform, &Camera)>,
// The global offset resource, if you have one
world_offset: Res<WorldOffset>,
// The chunk-size logic from the octree, so we can compute chunk coords
octree_query: Query<&SparseVoxelOctree>, // or get_single if there's only one octree
// The UI text entity
mut query_text: Query<&mut Text, With<SpeedDisplay>>,
) {
let camera_controller = query_camera_controller.single();
let (transform, double_tf, _camera) = camera_query.single();
let mut text = query_text.single_mut();
// The global double position: offset + camera's double translation
let global_pos = world_offset.0 + double_tf.translation;
// We'll attempt to get the octree so we can compute chunk coords
// If there's no octree, we just show "N/A".
/*let (chunk_cx, chunk_cy, chunk_cz) = if let Ok(octree) = octree_query.get_single() {
// 1) get voxel step
let step = octree.get_spacing_at_depth(octree.max_depth);
// 2) chunk world size
let chunk_world_size = CHUNK_SIZE as f64 * step;
// 3) compute chunk coords using global_pos
let cx = ((global_pos.x) / chunk_world_size).floor() as i32;
let cy = ((global_pos.y) / chunk_world_size).floor() as i32;
let cz = ((global_pos.z) / chunk_world_size).floor() as i32;
(cx, cy, cz)
} else {
(0, 0, 0) // or default
};*/
// Format the string to show speed, positions, and chunk coords
text.0 = format!(
"\n Speed: {:.3}\n Position(f32): ({:.2},{:.2},{:.2})\n Position(f64): ({:.2},{:.2},{:.2})",
camera_controller.speed,
transform.translation.x,
transform.translation.y,
transform.translation.z,
global_pos.x,
global_pos.y,
global_pos.z,
);
}

360
src/systems/voxels/debug.rs Normal file
View File

@ -0,0 +1,360 @@
use bevy::color::palettes::basic::{BLACK, RED, YELLOW};
use bevy::color::palettes::css::GREEN;
use bevy::math::{DQuat, DVec3, Vec3};
use bevy::pbr::wireframe::Wireframe;
use bevy::prelude::*;
use bevy::render::mesh::{Indices, PrimitiveTopology};
use bevy::render::render_asset::RenderAssetUsages;
use bevy_egui::egui::emath::Numeric;
use bevy_render::prelude::*;
use crate::helper::large_transform::DoubleTransform;
use crate::systems::voxels::structure::{ChunkEntities, OctreeNode, SparseVoxelOctree};
pub fn visualize_octree(
mut gizmos: Gizmos,
camera_query: Query<&DoubleTransform, With<Camera>>,
octree_query: Query<(&SparseVoxelOctree, &DoubleTransform)>,
) {
let camera_tf = camera_query.single(); // your "real" camera position in double precision
let camera_pos = camera_tf.translation; // DVec3
for (octree, octree_tf) in octree_query.iter() {
let octree_world_pos = octree_tf.translation;
visualize_recursive(
&mut gizmos,
&octree.root,
octree_world_pos, // octrees root center
octree.size,
octree.max_depth,
camera_pos,
);
}
}
fn visualize_recursive(
gizmos: &mut Gizmos,
node: &OctreeNode,
node_center: DVec3,
node_size: f64,
depth: u32,
camera_pos: DVec3,
) {
if depth == 0 {
return;
}
// If you want to draw the bounding box of this node:
/*let half = node_size as f32 * 0.5;*/
// Convert double center -> local f32 position
let center_f32 = (node_center - camera_pos).as_vec3();
// A quick approach: draw a wireframe cube by drawing lines for each edge
// Or use "cuboid gizmo" methods in future bevy versions that might exist.
/*draw_wire_cube(gizmos, center_f32, half, Color::YELLOW);*/
gizmos.cuboid(
Transform::from_translation(center_f32).with_scale(Vec3::splat(node_size as f32)),
BLACK,
);
// Recurse children
if let Some(children) = &node.children {
let child_size = node_size / 2.0;
for (i, child) in children.iter().enumerate() {
let offset_x = if (i & 1) == 1 { child_size / 2.0 } else { -child_size / 2.0 };
let offset_y = if (i & 2) == 2 { child_size / 2.0 } else { -child_size / 2.0 };
let offset_z = if (i & 4) == 4 { child_size / 2.0 } else { -child_size / 2.0 };
let child_center = DVec3::new(
node_center.x + offset_x,
node_center.y + offset_y,
node_center.z + offset_z,
);
visualize_recursive(
gizmos,
child,
child_center,
child_size,
depth - 1,
camera_pos,
);
}
}
}
#[allow(dead_code)]
pub fn draw_grid(
mut gizmos: Gizmos,
camera_query: Query<&DoubleTransform, With<Camera>>,
octree_query: Query<(&SparseVoxelOctree, &DoubleTransform)>,
) {
// 1) Get the cameras double transform for offset
let camera_tf = camera_query.single();
let camera_pos = camera_tf.translation; // DVec3
for (octree, octree_dtf) in octree_query.iter() {
// 2) Octrees double position
let octree_pos = octree_dtf.translation; // e.g. [100_000, 0, 0] in double space
// 3) Compute spacing in f64
let grid_spacing = octree.get_spacing_at_depth(octree.max_depth) as f64;
let grid_size = (octree.size / grid_spacing) as i32;
// 4) Start position in local "octree space"
// We'll define the bounding region from [-size/2, +size/2]
let half_size = octree.size * 0.5;
let start_position = -half_size; // f64
// 5) Loop over lines
for i in 0..=grid_size {
// i-th line offset
let offset = i as f64 * grid_spacing;
// a) Lines along Z
// from (start_position + offset, 0, start_position)
// to (start_position + offset, 0, start_position + grid_size * spacing)
{
let x = start_position + offset;
let z1 = start_position;
let z2 = start_position + (grid_size as f64 * grid_spacing);
// Convert these points to "world double" by adding octree_pos
let p1_d = DVec3::new(x, 0.0, z1) + octree_pos;
let p2_d = DVec3::new(x, 0.0, z2) + octree_pos;
// Then offset by camera_pos, convert to f32
let p1_f32 = (p1_d - camera_pos).as_vec3();
let p2_f32 = (p2_d - camera_pos).as_vec3();
// Draw the line
gizmos.line(p1_f32, p2_f32, Color::WHITE);
}
// b) Lines along X
// from (start_position, 0, start_position + offset)
// to (start_position + grid_size * spacing, 0, start_position + offset)
{
let z = start_position + offset;
let x1 = start_position;
let x2 = start_position + (grid_size as f64 * grid_spacing);
let p1_d = DVec3::new(x1, 0.0, z) + octree_pos;
let p2_d = DVec3::new(x2, 0.0, z) + octree_pos;
let p1_f32 = (p1_d - camera_pos).as_vec3();
let p2_f32 = (p2_d - camera_pos).as_vec3();
gizmos.line(p1_f32, p2_f32, Color::WHITE);
}
}
}
}
/*#[derive(Component)]
pub struct GridMarker;
pub fn draw_grid(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
query: Query<(Entity, &SparseVoxelOctree)>, // Query to access the octree
grid_query: Query<Entity, With<GridMarker>>, // Query to find existing grid entities
) {
for (_, octree) in query.iter() {
if octree.show_world_grid {
// If grid should be shown, check if it already exists
if grid_query.iter().next().is_none() {
// Grid doesn't exist, so create it
let grid_spacing = octree.get_spacing_at_depth(octree.max_depth) as f32; // Get spacing at the specified depth
let grid_size = (octree.size / grid_spacing as f64) as i32; // Determine the number of lines needed
let mut positions = Vec::new();
let mut indices = Vec::new();
// Calculate the start position to center the grid
let start_position = -(octree.size as f32 / 2.0);
// Create lines along the X and Z axes based on calculated spacing
for i in 0..=grid_size {
// Lines along the Z-axis
positions.push([start_position + i as f32 * grid_spacing, 0.0, start_position]);
positions.push([start_position + i as f32 * grid_spacing, 0.0, start_position + grid_size as f32 * grid_spacing]);
// Indices for the Z-axis lines
let base_index = (i * 2) as u32;
indices.push(base_index);
indices.push(base_index + 1);
// Lines along the X-axis
positions.push([start_position, 0.0, start_position + i as f32 * grid_spacing]);
positions.push([start_position + grid_size as f32 * grid_spacing, 0.0, start_position + i as f32 * grid_spacing]);
// Indices for the X-axis lines
let base_index_x = ((grid_size + 1 + i) * 2) as u32;
indices.push(base_index_x);
indices.push(base_index_x + 1);
}
// Create the line mesh
let mut mesh = Mesh::new(PrimitiveTopology::LineList, RenderAssetUsages::default());
mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, positions);
mesh.insert_indices(Indices::U32(indices));
let color = bevy::color::Color::srgba(204.0 / 255.0, 0.0, 218.0 / 255.0, 15.0 / 255.0);
// Spawn the entity with the line mesh
commands.spawn(PbrBundle {
mesh: meshes.add(mesh).into(),
material: materials.add(StandardMaterial {
base_color: Color::WHITE,
unlit: true, // Makes the lines visible without lighting
..Default::default()
}).into(),
transform: Transform::default(),
..Default::default()
})
.insert(GridMarker); // Add a marker component to identify the grid
}
} else {
// If grid should not be shown, remove any existing grid
for grid_entity in grid_query.iter() {
commands.entity(grid_entity).despawn();
}
}
}
}
*/
/*#[derive(Component)]
pub struct BuildVisualization;
#[derive(Debug)]
pub struct EphemeralLine {
pub start: Vec3,
pub end: Vec3,
pub color: Color,
pub time_left: f32, // in seconds
}
#[derive(Resource, Default)]
pub struct EphemeralLines {
pub lines: Vec<EphemeralLine>,
}
pub fn ephemeral_lines_system(
mut lines: ResMut<EphemeralLines>,
mut gizmos: Gizmos,
time: Res<Time>,
) {
let dt = time.delta_secs();
// Retain only those with time_left > 0, and while they're active, draw them
lines.lines.retain_mut(|line| {
line.time_left -= dt;
if line.time_left > 0.0 {
// Draw the line with gizmos
gizmos.line(line.start, line.end, line.color);
// Keep it
true
} else {
// Times up, discard
false
}
});
}*/
// System that draws wireframe boxes around each chunk's bounding region.
pub fn debug_draw_chunks_system(
chunk_entities: Res<ChunkEntities>,
// If your chunk placement depends on the octree's transform
// query that. Otherwise you can skip if they're always at (0,0,0).
octree_query: Query<(&SparseVoxelOctree, &DoubleTransform)>,
// Optional: If you want large-world offset for camera, we can subtract camera position.
// If you don't have floating-origin logic, you can skip this.
camera_query: Query<&DoubleTransform, With<Camera>>,
mut gizmos: Gizmos,
) {
// We'll get the octree transform offset if we have only one octree.
// Adjust if you have multiple.
let (octree, octree_tf) = match octree_query.get_single() {
Ok(x) => x,
Err(_) => return,
};
// 1) Determine the world size of a single voxel
let step = octree.get_spacing_at_depth(octree.max_depth);
// chunk_size in world units = 16 voxels * step
let chunk_size_world = octree.get_chunk_size() as f64 * step;
// 2) We'll also get the octree's offset in double precision
let octree_pos_d = octree_tf.translation;
// If you want a floating origin approach, subtract the camera's double position:
let camera_tf = match camera_query.get_single() {
Ok(tf) => tf,
Err(_) => return,
};
let camera_pos_d = camera_tf.translation;
// For each chunk coordinate
for (&(cx, cy, cz), _entity) in chunk_entities.map.iter() {
// 4) Chunk bounding box in double precision
let chunk_min_d = octree_pos_d
+ DVec3::new(
cx as f64 * chunk_size_world,
cy as f64 * chunk_size_world,
cz as f64 * chunk_size_world,
);
let chunk_max_d = chunk_min_d + DVec3::splat(chunk_size_world);
// 5) Convert to local f32 near the camera
let min_f32 = (chunk_min_d - camera_pos_d).as_vec3();
let max_f32 = (chunk_max_d - camera_pos_d).as_vec3();
// 6) Draw ephemeral lines for the box
draw_wire_cube(&mut gizmos, min_f32, max_f32, Color::from(YELLOW));
}
}
/// Helper function to draw a wireframe box from `min` to `max` in ephemeral gizmos.
fn draw_wire_cube(
gizmos: &mut Gizmos,
min: Vec3,
max: Vec3,
color: Color,
) {
// corners
let c0 = Vec3::new(min.x, min.y, min.z);
let c1 = Vec3::new(max.x, min.y, min.z);
let c2 = Vec3::new(min.x, max.y, min.z);
let c3 = Vec3::new(max.x, max.y, min.z);
let c4 = Vec3::new(min.x, min.y, max.z);
let c5 = Vec3::new(max.x, min.y, max.z);
let c6 = Vec3::new(min.x, max.y, max.z);
let c7 = Vec3::new(max.x, max.y, max.z);
// edges
// bottom face
gizmos.line(c0, c1, color);
gizmos.line(c1, c3, color);
gizmos.line(c3, c2, color);
gizmos.line(c2, c0, color);
// top face
gizmos.line(c4, c5, color);
gizmos.line(c5, c7, color);
gizmos.line(c7, c6, color);
gizmos.line(c6, c4, color);
// verticals
gizmos.line(c0, c4, color);
gizmos.line(c1, c5, color);
gizmos.line(c2, c6, color);
gizmos.line(c3, c7, color);
}

View File

@ -0,0 +1,322 @@
use bevy::color::Color;
use bevy::math::DVec3;
use bevy::prelude::Vec3;
use bevy_egui::egui::Key::D;
use crate::systems::voxels::structure::{OctreeNode, Ray, SparseVoxelOctree, Voxel, AABB};
impl SparseVoxelOctree {
pub fn ray_intersects_aabb(&self,ray: &Ray, aabb: &AABB) -> bool {
let inv_dir = 1.0 / ray.direction;
let t1 = (aabb.min - ray.origin) * inv_dir;
let t2 = (aabb.max - ray.origin) * inv_dir;
let t_min = t1.min(t2);
let t_max = t1.max(t2);
let t_enter = t_min.max_element();
let t_exit = t_max.min_element();
t_enter <= t_exit && t_exit >= 0.0
}
pub fn get_spacing_at_depth(&self, depth: u32) -> f64 {
// Ensure the depth does not exceed the maximum depth
let effective_depth = depth.min(self.max_depth);
// Calculate the voxel size at the specified depth
self.size / (2_u64.pow(effective_depth)) as f64
}
/// Normalize the world position to the nearest voxel grid position at the specified depth.
pub fn normalize_to_voxel_at_depth(
&self,
world_x: f64,
world_y: f64,
world_z: f64,
depth: u32,
) -> (f64, f64, f64) {
// Calculate the voxel size at the specified depth
let voxel_size = self.get_spacing_at_depth(depth);
// Align the world position to the center of the voxel
let aligned_x = (world_x / voxel_size).floor() * voxel_size + voxel_size / 2.0;
let aligned_y = (world_y / voxel_size).floor() * voxel_size + voxel_size / 2.0;
let aligned_z = (world_z / voxel_size).floor() * voxel_size + voxel_size / 2.0;
(aligned_x, aligned_y, aligned_z)
}
pub fn compute_child_bounds(&self, bounds: &AABB, index: usize) -> AABB {
let min = bounds.min;
let max = bounds.max;
let center = (min + max) / 2.0;
let x_min = if (index & 1) == 0 { min.x } else { center.x };
let x_max = if (index & 1) == 0 { center.x } else { max.x };
let y_min = if (index & 2) == 0 { min.y } else { center.y };
let y_max = if (index & 2) == 0 { center.y } else { max.y };
let z_min = if (index & 4) == 0 { min.z } else { center.z };
let z_max = if (index & 4) == 0 { center.z } else { max.z };
let child_bounds = AABB {
min: Vec3::new(x_min, y_min, z_min),
max: Vec3::new(x_max, y_max, z_max),
};
child_bounds
}
pub fn ray_intersects_aabb_with_normal(
&self,
ray: &Ray,
aabb: &AABB,
) -> Option<(f32, f32, Vec3)> {
let inv_dir = 1.0 / ray.direction;
let t1 = (aabb.min - ray.origin) * inv_dir;
let t2 = (aabb.max - ray.origin) * inv_dir;
let tmin = t1.min(t2);
let tmax = t1.max(t2);
let t_enter = tmin.max_element();
let t_exit = tmax.min_element();
if t_enter <= t_exit && t_exit >= 0.0 {
// Calculate normal based on which component contributed to t_enter
let epsilon = 1e-6;
let mut normal = Vec3::ZERO;
if (t_enter - t1.x).abs() < epsilon || (t_enter - t2.x).abs() < epsilon {
normal = Vec3::new(if ray.direction.x < 0.0 { 1.0 } else { -1.0 }, 0.0, 0.0);
} else if (t_enter - t1.y).abs() < epsilon || (t_enter - t2.y).abs() < epsilon {
normal = Vec3::new(0.0, if ray.direction.y < 0.0 { 1.0 } else { -1.0 }, 0.0);
} else if (t_enter - t1.z).abs() < epsilon || (t_enter - t2.z).abs() < epsilon {
normal = Vec3::new(0.0, 0.0, if ray.direction.z < 0.0 { 1.0 } else { -1.0 });
}
Some((t_enter, t_exit, normal))
} else {
None
}
}
/// Checks if a position is within the current octree bounds.
pub fn contains(&self, x: f64, y: f64, z: f64) -> bool {
let half_size = self.size / 2.0;
let epsilon = 1e-6; // Epsilon for floating-point precision
(x >= -half_size - epsilon && x < half_size + epsilon) &&
(y >= -half_size - epsilon && y < half_size + epsilon) &&
(z >= -half_size - epsilon && z < half_size + epsilon)
}
pub fn get_voxel_at_world_coords(&self, world_x: f64, world_y: f64, world_z: f64) -> Option<&Voxel> {
// Correct normalization: calculate the position relative to the octree's center
let normalized_x = (world_x + (self.size / 2.0)) / self.size;
let normalized_y = (world_y + (self.size / 2.0)) / self.size;
let normalized_z = (world_z + (self.size / 2.0)) / self.size;
self.get_voxel_at(normalized_x, normalized_y, normalized_z)
}
/// A small helper to compute chunk coords from a voxel's "true" world position
pub fn compute_chunk_coords(&self, world_x: f64, world_y: f64, world_z: f64) -> (i64, i64, i64) {
// The size of one voxel at max_depth
let step = self.get_spacing_at_depth(self.max_depth);
// Each chunk is 16 voxels => chunk_size_world = 16.0 * step
let chunk_size = self.get_chunk_size();
let chunk_size_world = chunk_size as f64 * step;
// Divide the world coords by chunk_size_world, floor => chunk coordinate
let cx = (world_x / chunk_size_world).floor();
let cy = (world_y / chunk_size_world).floor();
let cz = (world_z / chunk_size_world).floor();
(cx as i64, cy as i64, cz as i64)
}
pub fn has_volume(&self, node: &OctreeNode) -> bool {
// Check if this node is a leaf with a voxel
if node.is_leaf && node.voxel.is_some() {
return true;
}
// If the node has children, recursively check them
if let Some(children) = &node.children {
for child in children.iter() {
if self.has_volume(child) {
return true; // If any child has a voxel, the chunk has volume
}
}
}
// If no voxel found in this node or its children
false
}
pub fn get_chunk_size(&self) -> u32 {
self.max_depth - 1
}
pub fn get_chunk_node(&self, world_x: f64, world_y: f64, world_z: f64) -> Option<&OctreeNode> {
// Ensure the world position is within the octree's bounds
if !self.contains(world_x, world_y, world_z) {
return None;
}
// Normalize the world position to the octree's space
let normalized_x = (world_x + (self.size / 2.0)) / self.size;
let normalized_y = (world_y + (self.size / 2.0)) / self.size;
let normalized_z = (world_z + (self.size / 2.0)) / self.size;
let chunk_size = self.get_chunk_size();
// Traverse to the appropriate chunk node
Self::get_node_at_depth(&self.root, normalized_x, normalized_y, normalized_z, chunk_size)
}
/// Helper function to recursively traverse the octree to a specific depth.
fn get_node_at_depth(
node: &OctreeNode,
x: f64,
y: f64,
z: f64,
depth: u32,
) -> Option<&OctreeNode> {
if depth == 0 {
return Some(node); // We've reached the desired depth
}
if let Some(ref children) = node.children {
// Determine which child to traverse into
let epsilon = 1e-6;
let index = ((x >= 0.5 - epsilon) as usize)
+ ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f64| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
// Recurse into the correct child
Self::get_node_at_depth(
&children[index],
adjust_coord(x),
adjust_coord(y),
adjust_coord(z),
depth - 1,
)
} else {
None // Node has no children at this depth
}
}
pub fn traverse_chunk(
&self,
node: &OctreeNode,
chunk_size: u32,
) -> Vec<(f32, f32, f32, Color, u32)> {
let mut voxels = Vec::new();
Self::traverse_chunk_recursive(node, 0.0, 0.0, 0.0, chunk_size as f32, 0, &mut voxels);
voxels
}
fn traverse_chunk_recursive(
node: &OctreeNode,
x: f32,
y: f32,
z: f32,
size: f32,
depth: u32,
voxels: &mut Vec<(f32, f32, f32, Color, u32)>,
) {
if node.is_leaf {
if let Some(voxel) = node.voxel {
voxels.push((x, y, z, voxel.color, depth));
}
}
if let Some(ref children) = node.children {
let half_size = size / 2.0;
for (i, child) in children.iter().enumerate() {
let offset = |bit: usize| if (i & bit) == bit { half_size } else { 0.0 };
Self::traverse_chunk_recursive(
child,
x + offset(1),
y + offset(2),
z + offset(4),
half_size,
depth + 1,
voxels,
);
}
}
}
}
/// Returns the (face_normal, local_offset) for the given neighbor direction.
/// - `dx, dy, dz`: The integer direction of the face (-1,0,0 / 1,0,0 / etc.)
/// - `voxel_size_f`: The world size of a single voxel (e.g. step as f32).
pub fn face_orientation(dx: f64, dy: f64, dz: f64, voxel_size_f: f32) -> (Vec3, Vec3) {
// We'll do a match on the direction
match (dx, dy, dz) {
// Negative X => face normal is (-1, 0, 0), local offset is -voxel_size/2 in X
(-1.0, 0.0, 0.0) => {
let normal = Vec3::new(-1.0, 0.0, 0.0);
let offset = Vec3::new(-voxel_size_f * 0.5, 0.0, 0.0);
(normal, offset)
}
// Positive X
(1.0, 0.0, 0.0) => {
let normal = Vec3::new(1.0, 0.0, 0.0);
let offset = Vec3::new(voxel_size_f * 0.5, 0.0, 0.0);
(normal, offset)
}
// Negative Y
(0.0, -1.0, 0.0) => {
let normal = Vec3::new(0.0, -1.0, 0.0);
let offset = Vec3::new(0.0, -voxel_size_f * 0.5, 0.0);
(normal, offset)
}
// Positive Y
(0.0, 1.0, 0.0) => {
let normal = Vec3::new(0.0, 1.0, 0.0);
let offset = Vec3::new(0.0, voxel_size_f * 0.5, 0.0);
(normal, offset)
}
// Negative Z
(0.0, 0.0, -1.0) => {
let normal = Vec3::new(0.0, 0.0, -1.0);
let offset = Vec3::new(0.0, 0.0, -voxel_size_f * 0.5);
(normal, offset)
}
// Positive Z
(0.0, 0.0, 1.0) => {
let normal = Vec3::new(0.0, 0.0, 1.0);
let offset = Vec3::new(0.0, 0.0, voxel_size_f * 0.5);
(normal, offset)
}
// If the direction is not one of the 6 axis directions, you might skip or handle differently
_ => {
// For safety, we can panic or return a default.
// But typically you won't call face_orientation with an invalid direction
panic!("Invalid face direction: ({}, {}, {})", dx, dy, dz);
}
}
}

View File

@ -0,0 +1,5 @@
pub mod debug;
pub mod helper;
pub mod octree;
pub mod structure;
pub mod rendering;

View File

@ -0,0 +1,401 @@
use std::collections::{HashMap, HashSet};
use bevy::asset::Assets;
use bevy::color::Color;
use bevy::math::{DQuat, DVec3};
use bevy::prelude::*;
use bevy::render::mesh::{Indices, PrimitiveTopology, VertexAttributeValues};
use bevy::render::render_asset::RenderAssetUsages;
use crate::helper::large_transform::DoubleTransform;
use crate::systems::voxels::structure::{ChunkEntities, OctreeNode, Ray, SparseVoxelOctree, Voxel, AABB, CHUNK_BUILD_BUDGET, CHUNK_NEIGHBOR_OFFSETS, CHUNK_RENDER_DISTANCE, NEIGHBOR_OFFSETS};
impl SparseVoxelOctree {
/// Creates a new octree with the specified max depth, size, and wireframe visibility.
pub fn new(max_depth: u32, size: f64, show_wireframe: bool, show_world_grid: bool, show_chunks: bool) -> Self {
Self {
root: OctreeNode::new(),
max_depth,
size,
show_wireframe,
show_world_grid,
show_chunks,
dirty_chunks: HashSet::new(),
}
}
pub fn insert(&mut self, world_x: f64, world_y: f64, world_z: f64, voxel: Voxel) {
// Normalize the world coordinates to the nearest voxel grid position
let (aligned_x, aligned_y, aligned_z) = self.normalize_to_voxel_at_depth(world_x, world_y, world_z, self.max_depth);
// Iteratively expand the root to include the voxel position
while !self.contains(aligned_x, aligned_y, aligned_z) {
self.expand_root(aligned_x, aligned_y, aligned_z);
}
// Correct normalization: calculate the position relative to the octree's center
let normalized_x = (aligned_x + (self.size / 2.0)) / self.size;
let normalized_y = (aligned_y + (self.size / 2.0)) / self.size;
let normalized_z = (aligned_z + (self.size / 2.0)) / self.size;
// Insert the voxel with its world position
let mut voxel_with_position = voxel;
voxel_with_position.position = Vec3::new(world_x as f32, world_y as f32, world_z as f32);
// Actually let's do a small helper:
let (cx, cy, cz) = self.compute_chunk_coords(world_x, world_y, world_z);
self.dirty_chunks.insert((cx as i32, cy as i32, cz as i32));
// 5b) Also mark the 6 neighboring chunks dirty to fix boundary faces
for &(nx, ny, nz) in CHUNK_NEIGHBOR_OFFSETS.iter() {
let neighbor_coord = (cx as i32 + nx, cy as i32 + ny, cz as i32 + nz);
self.dirty_chunks.insert(neighbor_coord);
}
SparseVoxelOctree::insert_recursive(&mut self.root, normalized_x, normalized_y, normalized_z, voxel_with_position, self.max_depth);
}
fn insert_recursive(node: &mut OctreeNode, x: f64, y: f64, z: f64, voxel: Voxel, depth: u32) {
if depth == 0 {
node.voxel = Some(voxel);
node.is_leaf = true;
return;
}
let epsilon = 1e-6; // Epsilon for floating-point precision
let index = ((x >= 0.5 - epsilon) as usize) + ((y >= 0.5 - epsilon) as usize * 2) + ((z >= 0.5 - epsilon) as usize * 4);
if node.children.is_none() {
node.children = Some(Box::new(core::array::from_fn(|_| OctreeNode::new())));
node.is_leaf = false;
}
if let Some(ref mut children) = node.children {
let adjust_coord = |coord: f64| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
SparseVoxelOctree::insert_recursive(&mut children[index], adjust_coord(x), adjust_coord(y), adjust_coord(z), voxel, depth - 1);
}
}
pub fn remove(&mut self, world_x: f64, world_y: f64, world_z: f64) {
// Normalize the world coordinates to the nearest voxel grid position
let (aligned_x, aligned_y, aligned_z) =
self.normalize_to_voxel_at_depth(world_x, world_y, world_z, self.max_depth);
// Correct normalization: calculate the position relative to the octree's center
let normalized_x = (aligned_x + (self.size / 2.0)) / self.size;
let normalized_y = (aligned_y + (self.size / 2.0)) / self.size;
let normalized_z = (aligned_z + (self.size / 2.0)) / self.size;
// figure out chunk coords for the removed voxel:
let (cx, cy, cz) = self.compute_chunk_coords(world_x, world_y, world_z);
self.dirty_chunks.insert((cx as i32, cy as i32, cz as i32));
for &(nx, ny, nz) in CHUNK_NEIGHBOR_OFFSETS.iter() {
let neighbor_coord = (cx as i32 + nx, cy as i32 + ny, cz as i32 + nz);
self.dirty_chunks.insert(neighbor_coord);
}
// Call the recursive remove function
Self::remove_recursive(&mut self.root, normalized_x, normalized_y, normalized_z, self.max_depth);
}
fn remove_recursive(node: &mut OctreeNode, x: f64, y: f64, z: f64, depth: u32) -> bool {
if depth == 0 {
// This is the leaf node where the voxel should be
if node.voxel.is_some() {
node.voxel = None;
node.is_leaf = false;
// Since we've removed the voxel and there are no children, this node can be pruned
return true;
} else {
// There was no voxel here
return false;
}
}
if node.children.is_none() {
// No children to traverse, voxel not found
return false;
}
let epsilon = 1e-6; // Epsilon for floating-point precision
let index = ((x >= 0.5 - epsilon) as usize)
+ ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f64| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
let child = &mut node.children.as_mut().unwrap()[index];
let should_prune_child = Self::remove_recursive(
child,
adjust_coord(x),
adjust_coord(y),
adjust_coord(z),
depth - 1,
);
if should_prune_child {
// Remove the child node
node.children.as_mut().unwrap()[index] = OctreeNode::new();
}
// After removing the child, check if all children are empty
let all_children_empty = node.children.as_ref().unwrap().iter().all(|child| child.is_empty());
if all_children_empty {
// Remove the children array
node.children = None;
node.is_leaf = true; // Now this node becomes a leaf
// If this node has no voxel and no children, it can be pruned
return node.voxel.is_none();
} else {
return false;
}
}
fn expand_root(&mut self, x: f64, y: f64, z: f64) {
let new_size = self.size * 2.0;
let new_depth = self.max_depth + 1;
// Create a new root node with 8 children
let mut new_root = OctreeNode::new();
new_root.children = Some(Box::new(core::array::from_fn(|_| OctreeNode::new())));
// The old root had 8 children; move each child to the correct new position
if let Some(old_children) = self.root.children.take() {
for (i, old_child) in old_children.iter().enumerate() {
// Determine which child of the new root the old child belongs in
let offset_x = if (i & 1) == 1 { 1 } else { 0 };
let offset_y = if (i & 2) == 2 { 1 } else { 0 };
let offset_z = if (i & 4) == 4 { 1 } else { 0 };
let new_index = offset_x + (offset_y * 2) + (offset_z * 4);
// Now, move the old child into the correct new child of the new root
let new_child = &mut new_root.children.as_mut().unwrap()[new_index];
// Create new children for the new child if necessary
if new_child.children.is_none() {
new_child.children = Some(Box::new(core::array::from_fn(|_| OctreeNode::new())));
}
// Place the old child in the correct "facing" position in the new child
let facing_x = if offset_x == 1 { 0 } else { 1 };
let facing_y = if offset_y == 1 { 0 } else { 1 };
let facing_z = if offset_z == 1 { 0 } else { 1 };
let facing_index = facing_x + (facing_y * 2) + (facing_z * 4);
new_child.children.as_mut().unwrap()[facing_index] = old_child.clone();
}
}
self.root = new_root;
self.size = new_size;
self.max_depth = new_depth;
}
/// Traverse the octree and collect voxel data.
pub fn traverse(&self) -> Vec<(f32, f32, f32, Color, u32)> {
let mut voxels = Vec::new();
Self::traverse_recursive(&self.root, 0.0, 0.0, 0.0, 1.0, 0, &mut voxels);
voxels
}
fn traverse_recursive(
node: &OctreeNode,
x: f32,
y: f32,
z: f32,
size: f32,
depth: u32,
voxels: &mut Vec<(f32, f32, f32, Color, u32)>,
) {
if node.is_leaf/* && !node.is_constant*/ {
if let Some(voxel) = node.voxel {
voxels.push((x, y, z, voxel.color, depth));
}
}
if let Some(ref children) = node.children {
let half_size = size / 2.0;
for (i, child) in children.iter().enumerate() {
let offset = |bit: usize| if (i & bit) == bit { half_size } else { 0.0 };
Self::traverse_recursive(
child,
x + offset(1),
y + offset(2),
z + offset(4),
half_size,
depth + 1,
voxels,
);
}
}
}
/// Retrieves a reference to the voxel at the given normalized coordinates and depth, if it exists.
pub fn get_voxel_at(&self, x: f64, y: f64, z: f64) -> Option<&Voxel> {
Self::get_voxel_recursive(&self.root, x, y, z)
}
fn get_voxel_recursive(
node: &OctreeNode,
x: f64,
y: f64,
z: f64,
) -> Option<&Voxel> {
if node.is_leaf {
return node.voxel.as_ref();
}
if let Some(ref children) = node.children {
let epsilon = 1e-6; // Epsilon for floating-point precision
let index = ((x >= 0.5 - epsilon) as usize)
+ ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f64| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
Self::get_voxel_recursive(
&children[index],
adjust_coord(x),
adjust_coord(y),
adjust_coord(z),
)
} else {
None
}
}
/// Checks if there is a neighbor voxel at the specified direction from the given world coordinates at the specified depth.
/// The offsets are directions (-1, 0, 1) for x, y, z.
pub fn has_neighbor(
&self,
world_x: f64,
world_y: f64,
world_z: f64,
offset_x: i32,
offset_y: i32,
offset_z: i32,
depth: u32,
) -> bool {
// Normalize the world coordinates to the nearest voxel grid position at the specified depth
let (aligned_x, aligned_y, aligned_z) =
self.normalize_to_voxel_at_depth(world_x, world_y, world_z, depth);
// Calculate the voxel size at the specified depth
let voxel_size = self.get_spacing_at_depth(depth);
// Calculate the neighbor's world position
let neighbor_x = aligned_x + (offset_x as f64) * voxel_size;
let neighbor_y = aligned_y + (offset_y as f64) * voxel_size;
let neighbor_z = aligned_z + (offset_z as f64) * voxel_size;
// Check if the neighbor position is within bounds
if !self.contains(neighbor_x, neighbor_y, neighbor_z) {
return false;
}
// Get the voxel in the neighboring position
self.get_voxel_at_world_coords(neighbor_x, neighbor_y, neighbor_z)
.is_some()
}
/// Performs a raycast against the octree and returns the first intersected voxel.
pub fn raycast(&self, ray: &Ray) -> Option<(f64, f64, f64, u32, Vec3)> {
// Start from the root node
let half_size = self.size / 2.0;
let root_bounds = AABB {
min: Vec3::new(-half_size as f32, -half_size as f32, -half_size as f32),
max: Vec3::new(half_size as f32, half_size as f32, half_size as f32),
};
self.raycast_recursive(
&self.root,
ray,
&root_bounds,
0,
)
}
fn raycast_recursive(
&self,
node: &OctreeNode,
ray: &Ray,
bounds: &AABB,
depth: u32,
) -> Option<(f64, f64, f64, u32, Vec3)> {
// Check if the ray intersects this node's bounding box
if let Some((t_enter, _, normal)) = self.ray_intersects_aabb_with_normal(ray, bounds) {
// If this is a leaf node and contains a voxel, return it
if node.is_leaf && node.voxel.is_some() {
// Compute the exact hit position
let hit_position = ray.origin + ray.direction * t_enter;
// Return the hit position along with depth and normal
return Some((
hit_position.x as f64,
hit_position.y as f64,
hit_position.z as f64,
depth,
normal,
));
}
// If the node has children, traverse them
if let Some(ref children) = node.children {
// For each child, compute its bounding box and recurse
let mut hits = Vec::new();
for (i, child) in children.iter().enumerate() {
let child_bounds = self.compute_child_bounds(bounds, i);
if let Some(hit) = self.raycast_recursive(child, ray, &child_bounds, depth + 1) {
hits.push(hit);
}
}
// Return the closest hit, if any
if !hits.is_empty() {
hits.sort_by(|a, b| {
let dist_a = ((a.0 as f32 - ray.origin.x).powi(2)
+ (a.1 as f32 - ray.origin.y).powi(2)
+ (a.2 as f32 - ray.origin.z).powi(2))
.sqrt();
let dist_b = ((b.0 as f32 - ray.origin.x).powi(2)
+ (b.1 as f32 - ray.origin.y).powi(2)
+ (b.2 as f32 - ray.origin.z).powi(2))
.sqrt();
dist_a.partial_cmp(&dist_b).unwrap()
});
return Some(hits[0]);
}
}
}
None
}
}

View File

@ -0,0 +1,543 @@
// Chunk Rendering
use bevy::math::{DQuat, DVec3};
use bevy::prelude::*;
use bevy::utils::info;
use bevy_asset::RenderAssetUsages;
use bevy_render::mesh::{Indices, PrimitiveTopology, VertexAttributeValues};
use crate::helper::large_transform::{DoubleTransform, WorldOffset};
use crate::systems::voxels::structure::{ChunkEntities, ChunkMarker, SparseVoxelOctree, CHUNK_BUILD_BUDGET, CHUNK_RENDER_DISTANCE, NEIGHBOR_OFFSETS};
use crate::helper::large_transform::get_true_world_position;
use crate::systems::voxels::helper::face_orientation;
/*pub fn render(
mut commands: Commands,
mut query: Query<&mut SparseVoxelOctree>,
mut octree_transform_query: Query<&DoubleTransform, With<SparseVoxelOctree>>,
render_object_query: Query<Entity, With<VoxelTerrainMarker>>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
camera_query: Query<&Transform, With<Camera>>,
) {
// Get the camera's current position (if needed for LOD calculations)
let camera_transform = camera_query.single();
let _camera_position = camera_transform.translation;
for mut octree in query.iter_mut() {
// Handle updates to the octree only if it is marked as dirty
if !octree.dirty_chunks.is_empty() {
// Clear existing render objects
for entity in render_object_query.iter() {
commands.entity(entity).despawn();
}
// Collect the voxels to render
let voxels = octree.traverse();
let mut voxel_meshes = Vec::new();
for (x, y, z, _color, depth) in voxels {
let voxel_size = octree.get_spacing_at_depth(depth) as f32;
// Calculate the world position of the voxel
let world_position = Vec3::new(
(x * octree.size as f32) + (voxel_size / 2.0) - (octree.size / 2.0) as f32,
(y * octree.size as f32) + (voxel_size / 2.0) - (octree.size / 2.0) as f32,
(z * octree.size as f32) + (voxel_size / 2.0) - (octree.size / 2.0) as f32,
);
// Convert world_position components to f64 for neighbor checking
let world_x = world_position.x as f64;
let world_y = world_position.y as f64;
let world_z = world_position.z as f64;
// Iterate over all possible neighbor offsets
for &(dx, dy, dz) in NEIGHBOR_OFFSETS.iter() {
// Check if there's no neighbor in this direction
if !octree.has_neighbor(world_x, world_y, world_z, dx as i32, dy as i32, dz as i32, depth) {
// Determine the face normal and local position based on the direction
let (normal, local_position) = match (dx, dy, dz) {
(-1.0, 0.0, 0.0) => (
Vec3::new(-1.0, 0.0, 0.0),
Vec3::new(-voxel_size / 2.0, 0.0, 0.0),
),
(1.0, 0.0, 0.0) => (
Vec3::new(1.0, 0.0, 0.0),
Vec3::new(voxel_size / 2.0, 0.0, 0.0),
),
(0.0, -1.0, 0.0) => (
Vec3::new(0.0, -1.0, 0.0),
Vec3::new(0.0, -voxel_size / 2.0, 0.0),
),
(0.0, 1.0, 0.0) => (
Vec3::new(0.0, 1.0, 0.0),
Vec3::new(0.0, voxel_size / 2.0, 0.0),
),
(0.0, 0.0, -1.0) => (
Vec3::new(0.0, 0.0, -1.0),
Vec3::new(0.0, 0.0, -voxel_size / 2.0),
),
(0.0, 0.0, 1.0) => (
Vec3::new(0.0, 0.0, 1.0),
Vec3::new(0.0, 0.0, voxel_size / 2.0),
),
_ => continue,
};
// Generate the face for rendering
voxel_meshes.push(generate_face(
normal,
local_position,
world_position,
voxel_size / 2.0,
));
}
}
}
// Merge the voxel meshes into a single mesh
let mesh = merge_meshes(voxel_meshes);
let cube_handle = meshes.add(mesh);
// Spawn the mesh into the scene
commands.spawn((
PbrBundle {
mesh: Mesh3d::from(cube_handle),
material: MeshMaterial3d::from(materials.add(StandardMaterial {
base_color: Color::srgb(0.8, 0.7, 0.6),
..Default::default()
})),
transform: Default::default(),
..Default::default()
},
VoxelTerrainMarker {},
DoubleTransform {
translation: octree_transform_query.single().translation,
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
));
// Reset the dirty flag once the update is complete
octree.dirty_chunks.clear()
}
}
}
*/
#[derive(Component)]
pub struct VoxelTerrainMarker;
pub fn render(
mut commands: Commands,
mut octree_query: Query<&mut SparseVoxelOctree>,
octree_transform_query: Query<&DoubleTransform, With<SparseVoxelOctree>>,
mut chunk_entities: ResMut<ChunkEntities>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
// Use DoubleTransform for the camera
camera_query: Query<&DoubleTransform, With<Camera>>,
) {
let mut octree = match octree_query.get_single_mut() {
Ok(o) => o,
Err(_) => return,
};
let camera_dt = match camera_query.get_single() {
Ok(dt) => dt,
Err(_) => return,
};
// Convert camera's double position to f32 for distance calculations.
let camera_pos = camera_dt.translation.as_vec3();
let octree_dt = octree_transform_query.single();
let octree_offset = octree_dt.translation.as_vec3();
// Define chunk sizing.
let step = octree.get_spacing_at_depth(octree.max_depth);
let chunk_world_size = octree.get_chunk_size() as f32 * step as f32;
// 1) DESPAWN out-of-range chunks.
let mut chunks_to_remove = Vec::new();
for (&(cx, cy, cz), &entity) in chunk_entities.map.iter() {
let chunk_min = Vec3::new(
cx as f32 * chunk_world_size,
cy as f32 * chunk_world_size,
cz as f32 * chunk_world_size,
);
let chunk_center = chunk_min + Vec3::splat(chunk_world_size * 0.5);
let final_center = octree_offset + chunk_center;
let dist = camera_pos.distance(final_center);
if dist > CHUNK_RENDER_DISTANCE as f32 {
chunks_to_remove.push((cx, cy, cz, entity));
}
}
for (cx, cy, cz, e) in chunks_to_remove {
commands.entity(e).despawn();
chunk_entities.map.remove(&(cx, cy, cz));
}
// 2) LOAD new in-range chunks with nearest-first ordering.
let camera_cx = ((camera_pos.x - octree_offset.x) / chunk_world_size).floor() as i32;
let camera_cy = ((camera_pos.y - octree_offset.y) / chunk_world_size).floor() as i32;
let camera_cz = ((camera_pos.z - octree_offset.z) / chunk_world_size).floor() as i32;
let half_chunks = (CHUNK_RENDER_DISTANCE / chunk_world_size as f64).ceil() as i32;
let mut new_chunks_to_spawn = Vec::new();
for dx in -half_chunks..=half_chunks {
for dy in -half_chunks..=half_chunks {
for dz in -half_chunks..=half_chunks {
let cc = (camera_cx + dx, camera_cy + dy, camera_cz + dz);
if !chunk_entities.map.contains_key(&cc) {
let chunk_min = Vec3::new(
cc.0 as f32 * chunk_world_size,
cc.1 as f32 * chunk_world_size,
cc.2 as f32 * chunk_world_size,
);
let chunk_center = chunk_min + Vec3::splat(chunk_world_size * 0.5);
let final_center = octree_offset + chunk_center;
let dist = camera_pos.distance(final_center);
if dist <= CHUNK_RENDER_DISTANCE as f32 {
new_chunks_to_spawn.push(cc);
}
}
}
}
}
// Sort candidate chunks by distance (nearest first).
new_chunks_to_spawn.sort_by(|a, b| {
let pos_a = octree_offset
+ Vec3::new(
a.0 as f32 * chunk_world_size,
a.1 as f32 * chunk_world_size,
a.2 as f32 * chunk_world_size,
)
+ Vec3::splat(chunk_world_size * 0.5);
let pos_b = octree_offset
+ Vec3::new(
b.0 as f32 * chunk_world_size,
b.1 as f32 * chunk_world_size,
b.2 as f32 * chunk_world_size,
)
+ Vec3::splat(chunk_world_size * 0.5);
camera_pos
.distance(pos_a)
.partial_cmp(&camera_pos.distance(pos_b))
.unwrap()
});
let build_budget = 5; // Maximum chunks to build per frame.
let mut spawn_count = 0;
for cc in new_chunks_to_spawn {
if spawn_count >= build_budget {
break;
}
// Compute chunk's world position.
let chunk_min = Vec3::new(
cc.0 as f32 * chunk_world_size,
cc.1 as f32 * chunk_world_size,
cc.2 as f32 * chunk_world_size,
);
let chunk_center = chunk_min + Vec3::splat(chunk_world_size * 0.5);
// Check if this chunk has any voxels.
if let Some(chunk_node) =
octree.get_chunk_node(chunk_center.x as f64, chunk_center.y as f64, chunk_center.z as f64)
{
if octree.has_volume(chunk_node) {
info!("Loading chunk at: {},{},{} (has volume)", cc.0, cc.1, cc.2);
}
}
build_and_spawn_chunk(
&mut commands,
&octree,
&mut meshes,
&mut materials,
&mut chunk_entities,
cc,
octree_offset,
);
spawn_count += 1;
}
// 3) Rebuild dirty chunks (if any) with nearest-first ordering and budget.
if !octree.dirty_chunks.is_empty() {
let mut dirty = octree.dirty_chunks.drain().collect::<Vec<_>>();
dirty.sort_by(|a, b| {
let pos_a = octree_offset
+ Vec3::new(
a.0 as f32 * chunk_world_size,
a.1 as f32 * chunk_world_size,
a.2 as f32 * chunk_world_size,
)
+ Vec3::splat(chunk_world_size * 0.5);
let pos_b = octree_offset
+ Vec3::new(
b.0 as f32 * chunk_world_size,
b.1 as f32 * chunk_world_size,
b.2 as f32 * chunk_world_size,
)
+ Vec3::splat(chunk_world_size * 0.5);
camera_pos
.distance(pos_a)
.partial_cmp(&camera_pos.distance(pos_b))
.unwrap()
});
let mut rebuild_count = 0;
for chunk_coord in dirty {
if rebuild_count >= build_budget {
octree.dirty_chunks.insert(chunk_coord);
continue;
}
let chunk_min = Vec3::new(
chunk_coord.0 as f32 * chunk_world_size,
chunk_coord.1 as f32 * chunk_world_size,
chunk_coord.2 as f32 * chunk_world_size,
);
let chunk_center = chunk_min + Vec3::splat(chunk_world_size * 0.5);
let final_center = octree_offset + chunk_center;
let dist = camera_pos.distance(final_center);
if dist <= CHUNK_RENDER_DISTANCE as f32 {
if let Some(chunk_node) =
octree.get_chunk_node(chunk_center.x as f64, chunk_center.y as f64, chunk_center.z as f64)
{
if octree.has_volume(chunk_node) {
info!(
"Rebuilding chunk at: {},{},{} (has volume)",
chunk_coord.0, chunk_coord.1, chunk_coord.2
);
}
}
if let Some(e) = chunk_entities.map.remove(&chunk_coord) {
commands.entity(e).despawn();
}
build_and_spawn_chunk(
&mut commands,
&octree,
&mut meshes,
&mut materials,
&mut chunk_entities,
chunk_coord,
octree_offset,
);
rebuild_count += 1;
} else {
if let Some(e) = chunk_entities.map.remove(&chunk_coord) {
commands.entity(e).despawn();
}
}
}
}
}
fn build_and_spawn_chunk(
commands: &mut Commands,
octree: &SparseVoxelOctree,
meshes: &mut ResMut<Assets<Mesh>>,
materials: &mut ResMut<Assets<StandardMaterial>>,
chunk_entities: &mut ChunkEntities,
chunk_coord: (i32, i32, i32),
octree_offset: Vec3,
) {
let face_meshes = build_chunk_geometry(octree, chunk_coord);
if face_meshes.is_empty() {
return;
}
let merged = merge_meshes(face_meshes);
let mesh_handle = meshes.add(merged);
let step = octree.get_spacing_at_depth(octree.max_depth);
let chunk_world_size = octree.get_chunk_size() as f64 * step;
let chunk_min = Vec3::new(
chunk_coord.0 as f32 * chunk_world_size as f32,
chunk_coord.1 as f32 * chunk_world_size as f32,
chunk_coord.2 as f32 * chunk_world_size as f32,
);
let final_pos = octree_offset + chunk_min;
let e = commands.spawn((
PbrBundle {
mesh: mesh_handle.into(),
material: materials.add(StandardMaterial {
base_color: Color::rgb(0.8, 0.7, 0.6),
..default()
}).into(),
transform: Transform::from_translation(final_pos),
..default()
},
VoxelTerrainMarker,
DoubleTransform {
translation: DVec3::from(final_pos),
rotation: DQuat::IDENTITY,
scale: DVec3::ONE,
},
))
.id();
chunk_entities.map.insert(chunk_coord, e);
}
fn build_chunk_geometry(
octree: &SparseVoxelOctree,
(cx, cy, cz): (i32, i32, i32),
) -> Vec<Mesh> {
let mut face_meshes = Vec::new();
// step in world units for one voxel at max_depth
let step = octree.get_spacing_at_depth(octree.max_depth);
let chunk_size = octree.get_chunk_size();
// chunk is 16 voxels => chunk_min in world space:
let chunk_min_x = cx as f64 * (chunk_size as f64 * step);
let chunk_min_y = cy as f64 * (chunk_size as f64 * step);
let chunk_min_z = cz as f64 * (chunk_size as f64 * step);
// for local offset
let chunk_min_f32 = Vec3::new(
chunk_min_x as f32,
chunk_min_y as f32,
chunk_min_z as f32,
);
let voxel_size_f = step as f32;
// i in [0..16] => corner is chunk_min_x + i*step
// no +0.5 => corners approach
for i in 0..chunk_size {
let vx = chunk_min_x + i as f64 * step;
for j in 0..chunk_size {
let vy = chunk_min_y + j as f64 * step;
for k in 0..chunk_size {
let vz = chunk_min_z + k as f64 * step;
// check if we have a voxel at that corner
if let Some(_) = octree.get_voxel_at_world_coords(vx, vy, vz) {
// check neighbors
for &(dx, dy, dz) in NEIGHBOR_OFFSETS.iter() {
let nx = vx + dx as f64 * step;
let ny = vy + dy as f64 * step;
let nz = vz + dz as f64 * step;
if octree.get_voxel_at_world_coords(nx, ny, nz).is_none() {
let (normal, local_offset) = crate::systems::voxels::helper::face_orientation(dx, dy, dz, voxel_size_f);
// The voxel corner in chunk-local coords
let voxel_corner_local = Vec3::new(vx as f32, vy as f32, vz as f32)
- chunk_min_f32;
// generate face
// e.g. center might be the corner + 0.5 offset, or
// we can just treat the corner as the "center" in your face calc
// but let's do it carefully:
let face_center_local = voxel_corner_local + Vec3::splat(voxel_size_f*0.5);
let face_mesh = generate_face(
normal,
local_offset,
face_center_local,
voxel_size_f / 2.0,
);
face_meshes.push(face_mesh);
}
}
}
}
}
}
face_meshes
}
fn generate_face(orientation: Vec3, local_position: Vec3, position: Vec3, face_size: f32) -> Mesh {
// Initialize an empty mesh with triangle topology
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::default());
let mut positions = vec![
[-face_size, -face_size, 0.0],
[face_size, -face_size, 0.0],
[face_size, face_size, 0.0],
[-face_size, face_size, 0.0],
];
let rotation = Quat::from_rotation_arc(Vec3::Z, orientation);
// Rotate and translate the vertices based on orientation and position
for p in positions.iter_mut() {
let vertex = rotation * Vec3::from(*p);
let vertex = vertex + local_position + position; // Apply local and global translation
*p = [vertex.x, vertex.y, vertex.z];
}
let uvs = vec![[0.0, 1.0], [1.0, 1.0], [1.0, 0.0], [0.0, 0.0]];
let indices = Indices::U32(vec![0, 1, 2, 2, 3, 0]);
let normal = rotation * Vec3::Z; // Since face is aligned to Vec3::Z initially
let normals = vec![
[normal.x, normal.y, normal.z]; // Use the same normal for all vertices
4 // Four vertices in a quad
];
mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, positions);
mesh.insert_attribute(Mesh::ATTRIBUTE_NORMAL, normals);
mesh.insert_attribute(Mesh::ATTRIBUTE_UV_0, uvs);
mesh.insert_indices(indices);
mesh
}
fn merge_meshes(meshes: Vec<Mesh>) -> Mesh {
let mut merged_positions = Vec::new();
let mut merged_uvs = Vec::new();
let mut merged_normals = Vec::new(); // To store merged normals
let mut merged_indices = Vec::new();
for mesh in meshes {
if let Some(VertexAttributeValues::Float32x3(positions)) = mesh.attribute(Mesh::ATTRIBUTE_POSITION) {
let start_index = merged_positions.len();
merged_positions.extend_from_slice(positions);
// Extract UVs
if let Some(VertexAttributeValues::Float32x2(uvs)) = mesh.attribute(Mesh::ATTRIBUTE_UV_0) {
merged_uvs.extend_from_slice(uvs);
}
// Extract normals
if let Some(VertexAttributeValues::Float32x3(normals)) = mesh.attribute(Mesh::ATTRIBUTE_NORMAL) {
merged_normals.extend_from_slice(normals);
}
// Extract indices and apply offset
if let Some(indices) = mesh.indices() {
if let Indices::U32(indices) = indices {
let offset_indices: Vec<u32> = indices.iter().map(|i| i + start_index as u32).collect();
merged_indices.extend(offset_indices);
}
}
}
}
// Create new merged mesh
let mut merged_mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::default());
// Insert attributes into the merged mesh
merged_mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, merged_positions);
merged_mesh.insert_attribute(Mesh::ATTRIBUTE_UV_0, merged_uvs);
merged_mesh.insert_attribute(Mesh::ATTRIBUTE_NORMAL, merged_normals); // Insert merged normals
merged_mesh.insert_indices(Indices::U32(merged_indices));
merged_mesh
}

View File

@ -0,0 +1,107 @@
use std::collections::{HashMap, HashSet, VecDeque};
use bevy::color::Color;
use bevy::math::{DVec3, Vec2};
use bevy::prelude::{Component, Entity, Resource, Vec3};
use bevy_reflect::Reflect;
/// Represents a single voxel with a color.
#[derive(Debug, Clone, Copy, Component, PartialEq, Default)]
pub struct Voxel {
pub color: Color,
pub position: Vec3,
}
/// Represents a node in the sparse voxel octree.
#[derive(Debug, Component, Clone)]
pub struct OctreeNode {
pub children: Option<Box<[OctreeNode; 8]>>,
pub voxel: Option<Voxel>,
pub is_leaf: bool,
}
/// Represents the root of the sparse voxel octree.
/// Represents the root of the sparse voxel octree.
#[derive(Debug, Component, Reflect)]
#[reflect(from_reflect = false)]
pub struct SparseVoxelOctree {
#[reflect(ignore)]
pub root: OctreeNode,
pub max_depth: u32,
pub size: f64,
pub show_wireframe: bool,
pub show_world_grid: bool,
pub show_chunks: bool,
pub dirty_chunks: HashSet<(i32, i32, i32)>,
}
#[derive(Default, Resource, Reflect)]
pub struct ChunkEntities {
pub map: HashMap<(i32, i32, i32), Entity>,
}
#[derive(Component)]
pub struct ChunkMarker {
pub(crate) chunk_coords: (i64, i64, i64),
}
pub const CHUNK_RENDER_DISTANCE: f64 = 12.0;
pub const CHUNK_BUILD_BUDGET: usize = 10;
impl OctreeNode {
/// Creates a new empty octree node.
pub fn new() -> Self {
Self {
children: None,
voxel: None,
is_leaf: true,
}
}
pub fn is_empty(&self) -> bool {
self.voxel.is_none() && self.children.is_none()
}
}
impl Voxel {
/// Creates a new empty octree node.
pub fn new(color: Color) -> Self {
Self {
color,
position: Vec3::ZERO
}
}
}
pub const NEIGHBOR_OFFSETS: [(f64, f64, f64); 6] = [
(-1.0, 0.0, 0.0), // Left
(1.0, 0.0, 0.0), // Right
(0.0, -1.0, 0.0), // Down
(0.0, 1.0, 0.0), // Up
(0.0, 0.0, -1.0), // Back
(0.0, 0.0, 1.0), // Front
];
pub const CHUNK_NEIGHBOR_OFFSETS: [(i32, i32, i32); 6] = [
(-1, 0, 0),
(1, 0, 0),
(0, -1, 0),
(0, 1, 0),
(0, 0, -1),
(0, 0, 1),
];
#[derive(Debug)]
pub struct Ray {
pub origin: Vec3,
pub direction: Vec3,
}
#[derive(Clone)]
pub struct AABB {
pub min: Vec3,
pub max: Vec3,
}