mirror of
https://github.com/eliasstepanik/strudel.git
synced 2026-01-11 13:48:40 +00:00
always stringify fraction param
This commit is contained in:
parent
a3166dfbae
commit
67c54c07c2
908
fraction.js
908
fraction.js
@ -1,908 +0,0 @@
|
||||
/**
|
||||
* @license Fraction.js v4.1.2 23/05/2021
|
||||
* https://www.xarg.org/2014/03/rational-numbers-in-javascript/
|
||||
*
|
||||
* Copyright (c) 2021, Robert Eisele (robert@xarg.org)
|
||||
* Dual licensed under the MIT or GPL Version 2 licenses.
|
||||
**/
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* This class offers the possibility to calculate fractions.
|
||||
* You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
|
||||
*
|
||||
* Array/Object form
|
||||
* [ 0 => <nominator>, 1 => <denominator> ]
|
||||
* [ n => <nominator>, d => <denominator> ]
|
||||
*
|
||||
* Integer form
|
||||
* - Single integer value
|
||||
*
|
||||
* Double form
|
||||
* - Single double value
|
||||
*
|
||||
* String form
|
||||
* 123.456 - a simple double
|
||||
* 123/456 - a string fraction
|
||||
* 123.'456' - a double with repeating decimal places
|
||||
* 123.(456) - synonym
|
||||
* 123.45'6' - a double with repeating last place
|
||||
* 123.45(6) - synonym
|
||||
*
|
||||
* Example:
|
||||
*
|
||||
* var f = new Fraction("9.4'31'");
|
||||
* f.mul([-4, 3]).div(4.9);
|
||||
*
|
||||
*/
|
||||
|
||||
const memo = {};
|
||||
|
||||
let root = {};
|
||||
|
||||
"use strict";
|
||||
|
||||
// Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
|
||||
// Example: 1/7 = 0.(142857) has 6 repeating decimal places.
|
||||
// If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
|
||||
var MAX_CYCLE_LEN = 2000;
|
||||
|
||||
// Parsed data to avoid calling "new" all the time
|
||||
var P = {
|
||||
"s": 1,
|
||||
"n": 0,
|
||||
"d": 1
|
||||
};
|
||||
|
||||
function createError(name) {
|
||||
|
||||
function errorConstructor() {
|
||||
var temp = Error.apply(this, arguments);
|
||||
temp['name'] = this['name'] = name;
|
||||
this['stack'] = temp['stack'];
|
||||
this['message'] = temp['message'];
|
||||
}
|
||||
|
||||
/**
|
||||
* Error constructor
|
||||
*
|
||||
* @constructor
|
||||
*/
|
||||
function IntermediateInheritor() { }
|
||||
IntermediateInheritor.prototype = Error.prototype;
|
||||
errorConstructor.prototype = new IntermediateInheritor();
|
||||
|
||||
return errorConstructor;
|
||||
}
|
||||
|
||||
var DivisionByZero = Fraction['DivisionByZero'] = createError('DivisionByZero');
|
||||
var InvalidParameter = Fraction['InvalidParameter'] = createError('InvalidParameter');
|
||||
|
||||
function assign(n, s) {
|
||||
|
||||
if (isNaN(n = parseInt(n, 10))) {
|
||||
throwInvalidParam();
|
||||
}
|
||||
return n * s;
|
||||
}
|
||||
|
||||
function throwInvalidParam() {
|
||||
throw new InvalidParameter();
|
||||
}
|
||||
|
||||
function factorize(num) {
|
||||
|
||||
var factors = {};
|
||||
|
||||
var n = num;
|
||||
var i = 2;
|
||||
var s = 4;
|
||||
|
||||
while (s <= n) {
|
||||
|
||||
while (n % i === 0) {
|
||||
n /= i;
|
||||
factors[i] = (factors[i] || 0) + 1;
|
||||
}
|
||||
s += 1 + 2 * i++;
|
||||
}
|
||||
|
||||
if (n !== num) {
|
||||
if (n > 1)
|
||||
factors[n] = (factors[n] || 0) + 1;
|
||||
} else {
|
||||
factors[num] = (factors[num] || 0) + 1;
|
||||
}
|
||||
return factors;
|
||||
}
|
||||
|
||||
var parse = function(p1, p2) {
|
||||
|
||||
var n = 0, d = 1, s = 1;
|
||||
var v = 0, w = 0, x = 0, y = 1, z = 1;
|
||||
|
||||
var A = 0, B = 1;
|
||||
var C = 1, D = 1;
|
||||
|
||||
var N = 10000000;
|
||||
var M;
|
||||
|
||||
if (p1 === undefined || p1 === null) {
|
||||
/* void */
|
||||
} else if (p2 !== undefined) {
|
||||
n = p1;
|
||||
d = p2;
|
||||
s = n * d;
|
||||
} else
|
||||
switch (typeof p1) {
|
||||
|
||||
case "object":
|
||||
{
|
||||
if ("d" in p1 && "n" in p1) {
|
||||
n = p1["n"];
|
||||
d = p1["d"];
|
||||
if ("s" in p1)
|
||||
n *= p1["s"];
|
||||
} else if (0 in p1) {
|
||||
n = p1[0];
|
||||
if (1 in p1)
|
||||
d = p1[1];
|
||||
} else {
|
||||
throwInvalidParam();
|
||||
}
|
||||
s = n * d;
|
||||
break;
|
||||
}
|
||||
case "number":
|
||||
{
|
||||
if (p1 < 0) {
|
||||
s = p1;
|
||||
p1 = -p1;
|
||||
}
|
||||
|
||||
if (p1 % 1 === 0) {
|
||||
n = p1;
|
||||
} else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
|
||||
|
||||
if (p1 >= 1) {
|
||||
z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10));
|
||||
p1 /= z;
|
||||
}
|
||||
|
||||
const key = p1+'#'+p2
|
||||
const memoized = memo[key]
|
||||
if(memoized) {
|
||||
s = memoized.s;
|
||||
n = memoized.n;
|
||||
d = memoized.d;
|
||||
break;
|
||||
}
|
||||
|
||||
// Using Farey Sequences
|
||||
// http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/
|
||||
|
||||
while (B <= N && D <= N) {
|
||||
M = (A + C) / (B + D);
|
||||
|
||||
if (p1 === M) {
|
||||
if (B + D <= N) {
|
||||
n = A + C;
|
||||
d = B + D;
|
||||
} else if (D > B) {
|
||||
n = C;
|
||||
d = D;
|
||||
} else {
|
||||
n = A;
|
||||
d = B;
|
||||
}
|
||||
break;
|
||||
|
||||
} else {
|
||||
|
||||
if (p1 > M) {
|
||||
A += C;
|
||||
B += D;
|
||||
} else {
|
||||
C += A;
|
||||
D += B;
|
||||
}
|
||||
|
||||
if (B > N) {
|
||||
n = C;
|
||||
d = D;
|
||||
} else {
|
||||
n = A;
|
||||
d = B;
|
||||
}
|
||||
}
|
||||
}
|
||||
n *= z;
|
||||
} else if (isNaN(p1) || isNaN(p2)) {
|
||||
d = n = NaN;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case "string":
|
||||
{
|
||||
B = p1.match(/\d+|./g);
|
||||
|
||||
if (B === null)
|
||||
throwInvalidParam();
|
||||
|
||||
if (B[A] === '-') {// Check for minus sign at the beginning
|
||||
s = -1;
|
||||
A++;
|
||||
} else if (B[A] === '+') {// Check for plus sign at the beginning
|
||||
A++;
|
||||
}
|
||||
|
||||
if (B.length === A + 1) { // Check if it's just a simple number "1234"
|
||||
w = assign(B[A++], s);
|
||||
} else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number
|
||||
|
||||
if (B[A] !== '.') { // Handle 0.5 and .5
|
||||
v = assign(B[A++], s);
|
||||
}
|
||||
A++;
|
||||
|
||||
// Check for decimal places
|
||||
if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") {
|
||||
w = assign(B[A], s);
|
||||
y = Math.pow(10, B[A].length);
|
||||
A++;
|
||||
}
|
||||
|
||||
// Check for repeating places
|
||||
if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") {
|
||||
x = assign(B[A + 1], s);
|
||||
z = Math.pow(10, B[A + 1].length) - 1;
|
||||
A += 3;
|
||||
}
|
||||
|
||||
} else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
|
||||
w = assign(B[A], s);
|
||||
y = assign(B[A + 2], 1);
|
||||
A += 3;
|
||||
} else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2"
|
||||
v = assign(B[A], s);
|
||||
w = assign(B[A + 2], s);
|
||||
y = assign(B[A + 4], 1);
|
||||
A += 5;
|
||||
}
|
||||
|
||||
if (B.length <= A) { // Check for more tokens on the stack
|
||||
d = y * z;
|
||||
s = /* void */
|
||||
n = x + d * v + z * w;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Fall through on error */
|
||||
}
|
||||
default:
|
||||
throwInvalidParam();
|
||||
}
|
||||
|
||||
if (d === 0) {
|
||||
throw new DivisionByZero();
|
||||
}
|
||||
|
||||
P["s"] = s < 0 ? -1 : 1;
|
||||
P["n"] = Math.abs(n);
|
||||
P["d"] = Math.abs(d);
|
||||
memo[p1+'#'+p2] = {s:P["s"],n:P["n"],d:P["d"]};
|
||||
};
|
||||
|
||||
function modpow(b, e, m) {
|
||||
|
||||
var r = 1;
|
||||
for (; e > 0; b = (b * b) % m, e >>= 1) {
|
||||
|
||||
if (e & 1) {
|
||||
r = (r * b) % m;
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
function cycleLen(n, d) {
|
||||
|
||||
for (; d % 2 === 0;
|
||||
d /= 2) {
|
||||
}
|
||||
|
||||
for (; d % 5 === 0;
|
||||
d /= 5) {
|
||||
}
|
||||
|
||||
if (d === 1) // Catch non-cyclic numbers
|
||||
return 0;
|
||||
|
||||
// If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
|
||||
// 10^(d-1) % d == 1
|
||||
// However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
|
||||
// as we want to translate the numbers to strings.
|
||||
|
||||
var rem = 10 % d;
|
||||
var t = 1;
|
||||
|
||||
for (; rem !== 1; t++) {
|
||||
rem = rem * 10 % d;
|
||||
|
||||
if (t > MAX_CYCLE_LEN)
|
||||
return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
|
||||
}
|
||||
return t;
|
||||
}
|
||||
|
||||
|
||||
function cycleStart(n, d, len) {
|
||||
|
||||
var rem1 = 1;
|
||||
var rem2 = modpow(10, len, d);
|
||||
|
||||
for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
|
||||
// Solve 10^s == 10^(s+t) (mod d)
|
||||
|
||||
if (rem1 === rem2)
|
||||
return t;
|
||||
|
||||
rem1 = rem1 * 10 % d;
|
||||
rem2 = rem2 * 10 % d;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
function gcd(a, b) {
|
||||
|
||||
if (!a)
|
||||
return b;
|
||||
if (!b)
|
||||
return a;
|
||||
|
||||
while (1) {
|
||||
a %= b;
|
||||
if (!a)
|
||||
return b;
|
||||
b %= a;
|
||||
if (!b)
|
||||
return a;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Module constructor
|
||||
*
|
||||
* @constructor
|
||||
* @param {number|Fraction=} a
|
||||
* @param {number=} b
|
||||
*/
|
||||
function Fraction(a, b) {
|
||||
|
||||
if (!(this instanceof Fraction)) {
|
||||
return new Fraction(a, b);
|
||||
}
|
||||
|
||||
parse(a, b);
|
||||
|
||||
a = gcd(P["d"], P["n"]); // Abuse variable a
|
||||
|
||||
this["s"] = P["s"];
|
||||
this["n"] = P["n"] / a;
|
||||
this["d"] = P["d"] / a;
|
||||
}
|
||||
|
||||
Fraction.prototype = {
|
||||
|
||||
"s": 1,
|
||||
"n": 0,
|
||||
"d": 1,
|
||||
|
||||
/**
|
||||
* Calculates the absolute value
|
||||
*
|
||||
* Ex: new Fraction(-4).abs() => 4
|
||||
**/
|
||||
"abs": function() {
|
||||
|
||||
return new Fraction(this["n"], this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Inverts the sign of the current fraction
|
||||
*
|
||||
* Ex: new Fraction(-4).neg() => 4
|
||||
**/
|
||||
"neg": function() {
|
||||
|
||||
return new Fraction(-this["s"] * this["n"], this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Adds two rational numbers
|
||||
*
|
||||
* Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
|
||||
**/
|
||||
"add": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return new Fraction(
|
||||
this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Subtracts two rational numbers
|
||||
*
|
||||
* Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
|
||||
**/
|
||||
"sub": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return new Fraction(
|
||||
this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Multiplies two rational numbers
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
|
||||
**/
|
||||
"mul": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return new Fraction(
|
||||
this["s"] * P["s"] * this["n"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Divides two rational numbers
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").inverse().div(3)
|
||||
**/
|
||||
"div": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return new Fraction(
|
||||
this["s"] * P["s"] * this["n"] * P["d"],
|
||||
this["d"] * P["n"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Clones the actual object
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").clone()
|
||||
**/
|
||||
"clone": function() {
|
||||
return new Fraction(this);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the modulo of two rational numbers - a more precise fmod
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
|
||||
**/
|
||||
"mod": function(a, b) {
|
||||
|
||||
if (isNaN(this['n']) || isNaN(this['d'])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
|
||||
if (a === undefined) {
|
||||
return new Fraction(this["s"] * this["n"] % this["d"], 1);
|
||||
}
|
||||
|
||||
parse(a, b);
|
||||
if (0 === P["n"] && 0 === this["d"]) {
|
||||
Fraction(0, 0); // Throw DivisionByZero
|
||||
}
|
||||
|
||||
/*
|
||||
* First silly attempt, kinda slow
|
||||
*
|
||||
return that["sub"]({
|
||||
"n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
|
||||
"d": num["d"],
|
||||
"s": this["s"]
|
||||
});*/
|
||||
|
||||
/*
|
||||
* New attempt: a1 / b1 = a2 / b2 * q + r
|
||||
* => b2 * a1 = a2 * b1 * q + b1 * b2 * r
|
||||
* => (b2 * a1 % a2 * b1) / (b1 * b2)
|
||||
*/
|
||||
return new Fraction(
|
||||
this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
|
||||
P["d"] * this["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fractional gcd of two rational numbers
|
||||
*
|
||||
* Ex: new Fraction(5,8).gcd(3,7) => 1/56
|
||||
*/
|
||||
"gcd": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
|
||||
|
||||
return new Fraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fractional lcm of two rational numbers
|
||||
*
|
||||
* Ex: new Fraction(5,8).lcm(3,7) => 15
|
||||
*/
|
||||
"lcm": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
|
||||
|
||||
if (P["n"] === 0 && this["n"] === 0) {
|
||||
return new Fraction;
|
||||
}
|
||||
return new Fraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the ceil of a rational number
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').ceil() => (5 / 1)
|
||||
**/
|
||||
"ceil": function(places) {
|
||||
|
||||
places = Math.pow(10, places || 0);
|
||||
|
||||
if (isNaN(this["n"]) || isNaN(this["d"])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
return new Fraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the floor of a rational number
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').floor() => (4 / 1)
|
||||
**/
|
||||
"floor": function(places) {
|
||||
|
||||
places = Math.pow(10, places || 0);
|
||||
|
||||
if (isNaN(this["n"]) || isNaN(this["d"])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
return new Fraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Rounds a rational numbers
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').round() => (4 / 1)
|
||||
**/
|
||||
"round": function(places) {
|
||||
|
||||
places = Math.pow(10, places || 0);
|
||||
|
||||
if (isNaN(this["n"]) || isNaN(this["d"])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
return new Fraction(Math.round(places * this["s"] * this["n"] / this["d"]), places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Gets the inverse of the fraction, means numerator and denominator are exchanged
|
||||
*
|
||||
* Ex: new Fraction([-3, 4]).inverse() => -4 / 3
|
||||
**/
|
||||
"inverse": function() {
|
||||
|
||||
return new Fraction(this["s"] * this["d"], this["n"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fraction to some rational exponent, if possible
|
||||
*
|
||||
* Ex: new Fraction(-1,2).pow(-3) => -8
|
||||
*/
|
||||
"pow": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// Trivial case when exp is an integer
|
||||
|
||||
if (P['d'] === 1) {
|
||||
|
||||
if (P['s'] < 0) {
|
||||
return new Fraction(Math.pow(this['s'] * this["d"], P['n']), Math.pow(this["n"], P['n']));
|
||||
} else {
|
||||
return new Fraction(Math.pow(this['s'] * this["n"], P['n']), Math.pow(this["d"], P['n']));
|
||||
}
|
||||
}
|
||||
|
||||
// Negative roots become complex
|
||||
// (-a/b)^(c/d) = x
|
||||
// <=> (-1)^(c/d) * (a/b)^(c/d) = x
|
||||
// <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x # rotate 1 by 180°
|
||||
// <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula in Q ( https://proofwiki.org/wiki/De_Moivre%27s_Formula/Rational_Index )
|
||||
// From which follows that only for c=0 the root is non-complex. c/d is a reduced fraction, so that sin(c/dpi)=0 occurs for d=1, which is handled by our trivial case.
|
||||
if (this['s'] < 0) return null;
|
||||
|
||||
// Now prime factor n and d
|
||||
var N = factorize(this['n']);
|
||||
var D = factorize(this['d']);
|
||||
|
||||
// Exponentiate and take root for n and d individually
|
||||
var n = 1;
|
||||
var d = 1;
|
||||
for (var k in N) {
|
||||
if (k === '1') continue;
|
||||
if (k === '0') {
|
||||
n = 0;
|
||||
break;
|
||||
}
|
||||
N[k]*= P['n'];
|
||||
|
||||
if (N[k] % P['d'] === 0) {
|
||||
N[k]/= P['d'];
|
||||
} else return null;
|
||||
n*= Math.pow(k, N[k]);
|
||||
}
|
||||
|
||||
for (var k in D) {
|
||||
if (k === '1') continue;
|
||||
D[k]*= P['n'];
|
||||
|
||||
if (D[k] % P['d'] === 0) {
|
||||
D[k]/= P['d'];
|
||||
} else return null;
|
||||
d*= Math.pow(k, D[k]);
|
||||
}
|
||||
|
||||
if (P['s'] < 0) {
|
||||
return new Fraction(d, n);
|
||||
}
|
||||
return new Fraction(n, d);
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are the same
|
||||
*
|
||||
* Ex: new Fraction(19.6).equals([98, 5]);
|
||||
**/
|
||||
"equals": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are the same
|
||||
*
|
||||
* Ex: new Fraction(19.6).equals([98, 5]);
|
||||
**/
|
||||
"compare": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
|
||||
return (0 < t) - (t < 0);
|
||||
},
|
||||
|
||||
"simplify": function(eps) {
|
||||
|
||||
// First naive implementation, needs improvement
|
||||
|
||||
if (isNaN(this['n']) || isNaN(this['d'])) {
|
||||
return this;
|
||||
}
|
||||
|
||||
var cont = this['abs']()['toContinued']();
|
||||
|
||||
eps = eps || 0.001;
|
||||
|
||||
function rec(a) {
|
||||
if (a.length === 1)
|
||||
return new Fraction(a[0]);
|
||||
return rec(a.slice(1))['inverse']()['add'](a[0]);
|
||||
}
|
||||
|
||||
for (var i = 0; i < cont.length; i++) {
|
||||
var tmp = rec(cont.slice(0, i + 1));
|
||||
if (tmp['sub'](this['abs']())['abs']().valueOf() < eps) {
|
||||
return tmp['mul'](this['s']);
|
||||
}
|
||||
}
|
||||
return this;
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are divisible
|
||||
*
|
||||
* Ex: new Fraction(19.6).divisible(1.5);
|
||||
*/
|
||||
"divisible": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a decimal representation of the fraction
|
||||
*
|
||||
* Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
|
||||
**/
|
||||
'valueOf': function() {
|
||||
|
||||
return this["s"] * this["n"] / this["d"];
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a string-fraction representation of a Fraction object
|
||||
*
|
||||
* Ex: new Fraction("1.'3'").toFraction() => "4 1/3"
|
||||
**/
|
||||
'toFraction': function(excludeWhole) {
|
||||
|
||||
var whole, str = "";
|
||||
var n = this["n"];
|
||||
var d = this["d"];
|
||||
if (this["s"] < 0) {
|
||||
str += '-';
|
||||
}
|
||||
|
||||
if (d === 1) {
|
||||
str += n;
|
||||
} else {
|
||||
|
||||
if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
|
||||
str += whole;
|
||||
str += " ";
|
||||
n %= d;
|
||||
}
|
||||
|
||||
str += n;
|
||||
str += '/';
|
||||
str += d;
|
||||
}
|
||||
return str;
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a latex representation of a Fraction object
|
||||
*
|
||||
* Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
|
||||
**/
|
||||
'toLatex': function(excludeWhole) {
|
||||
|
||||
var whole, str = "";
|
||||
var n = this["n"];
|
||||
var d = this["d"];
|
||||
if (this["s"] < 0) {
|
||||
str += '-';
|
||||
}
|
||||
|
||||
if (d === 1) {
|
||||
str += n;
|
||||
} else {
|
||||
|
||||
if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
|
||||
str += whole;
|
||||
n %= d;
|
||||
}
|
||||
|
||||
str += "\\frac{";
|
||||
str += n;
|
||||
str += '}{';
|
||||
str += d;
|
||||
str += '}';
|
||||
}
|
||||
return str;
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns an array of continued fraction elements
|
||||
*
|
||||
* Ex: new Fraction("7/8").toContinued() => [0,1,7]
|
||||
*/
|
||||
'toContinued': function() {
|
||||
|
||||
var t;
|
||||
var a = this['n'];
|
||||
var b = this['d'];
|
||||
var res = [];
|
||||
|
||||
if (isNaN(a) || isNaN(b)) {
|
||||
return res;
|
||||
}
|
||||
|
||||
do {
|
||||
res.push(Math.floor(a / b));
|
||||
t = a % b;
|
||||
a = b;
|
||||
b = t;
|
||||
} while (a !== 1);
|
||||
|
||||
return res;
|
||||
},
|
||||
|
||||
/**
|
||||
* Creates a string representation of a fraction with all digits
|
||||
*
|
||||
* Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
|
||||
**/
|
||||
'toString': function(dec) {
|
||||
|
||||
var g;
|
||||
var N = this["n"];
|
||||
var D = this["d"];
|
||||
|
||||
if (isNaN(N) || isNaN(D)) {
|
||||
return "NaN";
|
||||
}
|
||||
|
||||
dec = dec || 15; // 15 = decimal places when no repetation
|
||||
|
||||
var cycLen = cycleLen(N, D); // Cycle length
|
||||
var cycOff = cycleStart(N, D, cycLen); // Cycle start
|
||||
|
||||
var str = this['s'] === -1 ? "-" : "";
|
||||
|
||||
str += N / D | 0;
|
||||
|
||||
N %= D;
|
||||
N *= 10;
|
||||
|
||||
if (N)
|
||||
str += ".";
|
||||
|
||||
if (cycLen) {
|
||||
|
||||
for (var i = cycOff; i--;) {
|
||||
str += N / D | 0;
|
||||
N %= D;
|
||||
N *= 10;
|
||||
}
|
||||
str += "(";
|
||||
for (var i = cycLen; i--;) {
|
||||
str += N / D | 0;
|
||||
N %= D;
|
||||
N *= 10;
|
||||
}
|
||||
str += ")";
|
||||
} else {
|
||||
for (var i = dec; N && i--;) {
|
||||
str += N / D | 0;
|
||||
N %= D;
|
||||
N *= 10;
|
||||
}
|
||||
}
|
||||
return str;
|
||||
}
|
||||
};
|
||||
|
||||
if (typeof define === "function" && define["amd"]) {
|
||||
define([], function() {
|
||||
return Fraction;
|
||||
});
|
||||
} else if (typeof exports === "object") {
|
||||
Object.defineProperty(Fraction, "__esModule", { 'value': true });
|
||||
Fraction['default'] = Fraction;
|
||||
Fraction['Fraction'] = Fraction;
|
||||
module['exports'] = Fraction;
|
||||
} else {
|
||||
root['Fraction'] = Fraction;
|
||||
}
|
||||
|
||||
|
||||
export default Fraction;
|
||||
84
fraction.mjs
Normal file
84
fraction.mjs
Normal file
@ -0,0 +1,84 @@
|
||||
import Fraction from 'fraction.js';
|
||||
import { TimeSpan } from './strudel.mjs';
|
||||
|
||||
// Returns the start of the cycle.
|
||||
Fraction.prototype.sam = function () {
|
||||
return this.floor();
|
||||
};
|
||||
|
||||
// Returns the start of the next cycle.
|
||||
Fraction.prototype.nextSam = function () {
|
||||
return this.sam().add(1);
|
||||
};
|
||||
|
||||
// Returns a TimeSpan representing the begin and end of the Time value's cycle
|
||||
Fraction.prototype.wholeCycle = function () {
|
||||
return new TimeSpan(this.sam(), this.nextSam());
|
||||
};
|
||||
|
||||
Fraction.prototype.lt = function (other) {
|
||||
return this.compare(other) < 0;
|
||||
};
|
||||
|
||||
Fraction.prototype.gt = function (other) {
|
||||
return this.compare(other) > 0;
|
||||
};
|
||||
|
||||
Fraction.prototype.lte = function (other) {
|
||||
return this.compare(other) <= 0;
|
||||
};
|
||||
|
||||
Fraction.prototype.gte = function (other) {
|
||||
return this.compare(other) >= 0;
|
||||
};
|
||||
|
||||
Fraction.prototype.eq = function (other) {
|
||||
return this.compare(other) == 0;
|
||||
};
|
||||
|
||||
Fraction.prototype.max = function (other) {
|
||||
return this.gt(other) ? this : other;
|
||||
};
|
||||
|
||||
Fraction.prototype.min = function (other) {
|
||||
return this.lt(other) ? this : other;
|
||||
};
|
||||
|
||||
Fraction.prototype.show = function () {
|
||||
return this.s * this.n + '/' + this.d;
|
||||
};
|
||||
|
||||
Fraction.prototype.or = function (other) {
|
||||
return this.eq(0) ? other : this;
|
||||
};
|
||||
|
||||
const fraction = (n) => {
|
||||
if (typeof n === 'number') {
|
||||
/*
|
||||
https://github.com/infusion/Fraction.js/#doubles
|
||||
„If you pass a double as it is, Fraction.js will perform a number analysis based on Farey Sequences."
|
||||
„If you want to keep the number as it is, convert it to a string, as the string parser will not perform any further observations“
|
||||
|
||||
-> those farey sequences turn out to make pattern querying ~20 times slower! always use strings!
|
||||
-> still, some optimizations could be done: .mul .div .add .sub calls still use numbers
|
||||
*/
|
||||
n = String(n);
|
||||
}
|
||||
return Fraction(n);
|
||||
};
|
||||
|
||||
export default fraction;
|
||||
|
||||
// "If you concern performance, cache Fraction.js objects and pass arrays/objects.“
|
||||
// -> tested memoized version, but it's slower than unmemoized, even with repeated evaluation
|
||||
/* const memo = {};
|
||||
const memoizedFraction = (n) => {
|
||||
if (typeof n === 'number') {
|
||||
n = String(n);
|
||||
}
|
||||
if (memo[n] !== undefined) {
|
||||
return memo[n];
|
||||
}
|
||||
memo[n] = Fraction(n);
|
||||
return memo[n];
|
||||
}; */
|
||||
@ -1,7 +1,7 @@
|
||||
import { Pattern, timeCat } from '../../strudel.mjs';
|
||||
import bjork from 'bjork';
|
||||
import { rotate } from '../../util.mjs';
|
||||
import Fraction from 'fraction.js';
|
||||
import Fraction from '../../fraction.js';
|
||||
|
||||
const euclid = (pulses, steps, rotation = 0) => {
|
||||
const b = bjork(steps, pulses);
|
||||
|
||||
@ -12,7 +12,7 @@ const applyOptions = (parent: any) => (pat: any, i: number) => {
|
||||
if (operator) {
|
||||
switch (operator.type_) {
|
||||
case 'stretch':
|
||||
const speed = new Fraction(operator.arguments_.amount).inverse();
|
||||
const speed = Fraction(operator.arguments_.amount).inverse();
|
||||
return reify(pat).fast(speed);
|
||||
case 'bjorklund':
|
||||
return pat.euclid(operator.arguments_.pulse, operator.arguments_.step, operator.arguments_.rotation);
|
||||
@ -56,7 +56,7 @@ function resolveReplications(ast) {
|
||||
options_: {
|
||||
operator: {
|
||||
type_: 'stretch',
|
||||
arguments_: { amount: new Fraction(replicate).inverse().toString() },
|
||||
arguments_: { amount: Fraction(replicate).inverse().toString() },
|
||||
},
|
||||
},
|
||||
},
|
||||
|
||||
53
strudel.mjs
53
strudel.mjs
@ -1,4 +1,4 @@
|
||||
import Fraction from './fraction.js'
|
||||
import Fraction from './fraction.mjs'
|
||||
import { compose } from 'ramda'; // will remove this as soon as compose is implemented here
|
||||
import { isNote, toMidi } from './util.mjs';
|
||||
|
||||
@ -30,57 +30,6 @@ export function curry(func, overload) {
|
||||
return fn;
|
||||
}
|
||||
|
||||
// Returns the start of the cycle.
|
||||
Fraction.prototype.sam = function() {
|
||||
return this.floor();
|
||||
}
|
||||
|
||||
// Returns the start of the next cycle.
|
||||
Fraction.prototype.nextSam = function() {
|
||||
return this.sam().add(1)
|
||||
}
|
||||
|
||||
// Returns a TimeSpan representing the begin and end of the Time value's cycle
|
||||
Fraction.prototype.wholeCycle = function() {
|
||||
return new TimeSpan(this.sam(), this.nextSam())
|
||||
}
|
||||
|
||||
Fraction.prototype.lt = function(other) {
|
||||
return this.compare(other) < 0
|
||||
}
|
||||
|
||||
Fraction.prototype.gt = function(other) {
|
||||
return this.compare(other) > 0
|
||||
}
|
||||
|
||||
Fraction.prototype.lte = function(other) {
|
||||
return this.compare(other) <= 0
|
||||
}
|
||||
|
||||
Fraction.prototype.gte = function(other) {
|
||||
return this.compare(other) >= 0
|
||||
}
|
||||
|
||||
Fraction.prototype.eq = function(other) {
|
||||
return this.compare(other) == 0
|
||||
}
|
||||
|
||||
Fraction.prototype.max = function(other) {
|
||||
return this.gt(other) ? this : other
|
||||
}
|
||||
|
||||
Fraction.prototype.min = function(other) {
|
||||
return this.lt(other) ? this : other
|
||||
}
|
||||
|
||||
Fraction.prototype.show = function () {
|
||||
return (this.s * this.n) + "/" + this.d
|
||||
}
|
||||
|
||||
Fraction.prototype.or = function(other) {
|
||||
return this.eq(0) ? other : this
|
||||
}
|
||||
|
||||
class TimeSpan {
|
||||
constructor(begin, end) {
|
||||
this.begin = Fraction(begin)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user