diff --git a/fraction.js b/fraction.js deleted file mode 100644 index fec06120..00000000 --- a/fraction.js +++ /dev/null @@ -1,908 +0,0 @@ -/** - * @license Fraction.js v4.1.2 23/05/2021 - * https://www.xarg.org/2014/03/rational-numbers-in-javascript/ - * - * Copyright (c) 2021, Robert Eisele (robert@xarg.org) - * Dual licensed under the MIT or GPL Version 2 licenses. - **/ - - -/** - * - * This class offers the possibility to calculate fractions. - * You can pass a fraction in different formats. Either as array, as double, as string or as an integer. - * - * Array/Object form - * [ 0 => , 1 => ] - * [ n => , d => ] - * - * Integer form - * - Single integer value - * - * Double form - * - Single double value - * - * String form - * 123.456 - a simple double - * 123/456 - a string fraction - * 123.'456' - a double with repeating decimal places - * 123.(456) - synonym - * 123.45'6' - a double with repeating last place - * 123.45(6) - synonym - * - * Example: - * - * var f = new Fraction("9.4'31'"); - * f.mul([-4, 3]).div(4.9); - * - */ - - const memo = {}; - - let root = {}; - - "use strict"; - - // Maximum search depth for cyclic rational numbers. 2000 should be more than enough. - // Example: 1/7 = 0.(142857) has 6 repeating decimal places. - // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits - var MAX_CYCLE_LEN = 2000; - - // Parsed data to avoid calling "new" all the time - var P = { - "s": 1, - "n": 0, - "d": 1 - }; - - function createError(name) { - - function errorConstructor() { - var temp = Error.apply(this, arguments); - temp['name'] = this['name'] = name; - this['stack'] = temp['stack']; - this['message'] = temp['message']; - } - - /** - * Error constructor - * - * @constructor - */ - function IntermediateInheritor() { } - IntermediateInheritor.prototype = Error.prototype; - errorConstructor.prototype = new IntermediateInheritor(); - - return errorConstructor; - } - - var DivisionByZero = Fraction['DivisionByZero'] = createError('DivisionByZero'); - var InvalidParameter = Fraction['InvalidParameter'] = createError('InvalidParameter'); - - function assign(n, s) { - - if (isNaN(n = parseInt(n, 10))) { - throwInvalidParam(); - } - return n * s; - } - - function throwInvalidParam() { - throw new InvalidParameter(); - } - - function factorize(num) { - - var factors = {}; - - var n = num; - var i = 2; - var s = 4; - - while (s <= n) { - - while (n % i === 0) { - n /= i; - factors[i] = (factors[i] || 0) + 1; - } - s += 1 + 2 * i++; - } - - if (n !== num) { - if (n > 1) - factors[n] = (factors[n] || 0) + 1; - } else { - factors[num] = (factors[num] || 0) + 1; - } - return factors; - } - - var parse = function(p1, p2) { - - var n = 0, d = 1, s = 1; - var v = 0, w = 0, x = 0, y = 1, z = 1; - - var A = 0, B = 1; - var C = 1, D = 1; - - var N = 10000000; - var M; - - if (p1 === undefined || p1 === null) { - /* void */ - } else if (p2 !== undefined) { - n = p1; - d = p2; - s = n * d; - } else - switch (typeof p1) { - - case "object": - { - if ("d" in p1 && "n" in p1) { - n = p1["n"]; - d = p1["d"]; - if ("s" in p1) - n *= p1["s"]; - } else if (0 in p1) { - n = p1[0]; - if (1 in p1) - d = p1[1]; - } else { - throwInvalidParam(); - } - s = n * d; - break; - } - case "number": - { - if (p1 < 0) { - s = p1; - p1 = -p1; - } - - if (p1 % 1 === 0) { - n = p1; - } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow - - if (p1 >= 1) { - z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10)); - p1 /= z; - } - - const key = p1+'#'+p2 - const memoized = memo[key] - if(memoized) { - s = memoized.s; - n = memoized.n; - d = memoized.d; - break; - } - - // Using Farey Sequences - // http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/ - - while (B <= N && D <= N) { - M = (A + C) / (B + D); - - if (p1 === M) { - if (B + D <= N) { - n = A + C; - d = B + D; - } else if (D > B) { - n = C; - d = D; - } else { - n = A; - d = B; - } - break; - - } else { - - if (p1 > M) { - A += C; - B += D; - } else { - C += A; - D += B; - } - - if (B > N) { - n = C; - d = D; - } else { - n = A; - d = B; - } - } - } - n *= z; - } else if (isNaN(p1) || isNaN(p2)) { - d = n = NaN; - } - break; - } - case "string": - { - B = p1.match(/\d+|./g); - - if (B === null) - throwInvalidParam(); - - if (B[A] === '-') {// Check for minus sign at the beginning - s = -1; - A++; - } else if (B[A] === '+') {// Check for plus sign at the beginning - A++; - } - - if (B.length === A + 1) { // Check if it's just a simple number "1234" - w = assign(B[A++], s); - } else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number - - if (B[A] !== '.') { // Handle 0.5 and .5 - v = assign(B[A++], s); - } - A++; - - // Check for decimal places - if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") { - w = assign(B[A], s); - y = Math.pow(10, B[A].length); - A++; - } - - // Check for repeating places - if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") { - x = assign(B[A + 1], s); - z = Math.pow(10, B[A + 1].length) - 1; - A += 3; - } - - } else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456" - w = assign(B[A], s); - y = assign(B[A + 2], 1); - A += 3; - } else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2" - v = assign(B[A], s); - w = assign(B[A + 2], s); - y = assign(B[A + 4], 1); - A += 5; - } - - if (B.length <= A) { // Check for more tokens on the stack - d = y * z; - s = /* void */ - n = x + d * v + z * w; - break; - } - - /* Fall through on error */ - } - default: - throwInvalidParam(); - } - - if (d === 0) { - throw new DivisionByZero(); - } - - P["s"] = s < 0 ? -1 : 1; - P["n"] = Math.abs(n); - P["d"] = Math.abs(d); - memo[p1+'#'+p2] = {s:P["s"],n:P["n"],d:P["d"]}; - }; - - function modpow(b, e, m) { - - var r = 1; - for (; e > 0; b = (b * b) % m, e >>= 1) { - - if (e & 1) { - r = (r * b) % m; - } - } - return r; - } - - - function cycleLen(n, d) { - - for (; d % 2 === 0; - d /= 2) { - } - - for (; d % 5 === 0; - d /= 5) { - } - - if (d === 1) // Catch non-cyclic numbers - return 0; - - // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem: - // 10^(d-1) % d == 1 - // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone, - // as we want to translate the numbers to strings. - - var rem = 10 % d; - var t = 1; - - for (; rem !== 1; t++) { - rem = rem * 10 % d; - - if (t > MAX_CYCLE_LEN) - return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1` - } - return t; - } - - - function cycleStart(n, d, len) { - - var rem1 = 1; - var rem2 = modpow(10, len, d); - - for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE) - // Solve 10^s == 10^(s+t) (mod d) - - if (rem1 === rem2) - return t; - - rem1 = rem1 * 10 % d; - rem2 = rem2 * 10 % d; - } - return 0; - } - - function gcd(a, b) { - - if (!a) - return b; - if (!b) - return a; - - while (1) { - a %= b; - if (!a) - return b; - b %= a; - if (!b) - return a; - } - }; - - /** - * Module constructor - * - * @constructor - * @param {number|Fraction=} a - * @param {number=} b - */ - function Fraction(a, b) { - - if (!(this instanceof Fraction)) { - return new Fraction(a, b); - } - - parse(a, b); - - a = gcd(P["d"], P["n"]); // Abuse variable a - - this["s"] = P["s"]; - this["n"] = P["n"] / a; - this["d"] = P["d"] / a; - } - - Fraction.prototype = { - - "s": 1, - "n": 0, - "d": 1, - - /** - * Calculates the absolute value - * - * Ex: new Fraction(-4).abs() => 4 - **/ - "abs": function() { - - return new Fraction(this["n"], this["d"]); - }, - - /** - * Inverts the sign of the current fraction - * - * Ex: new Fraction(-4).neg() => 4 - **/ - "neg": function() { - - return new Fraction(-this["s"] * this["n"], this["d"]); - }, - - /** - * Adds two rational numbers - * - * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30 - **/ - "add": function(a, b) { - - parse(a, b); - return new Fraction( - this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"], - this["d"] * P["d"] - ); - }, - - /** - * Subtracts two rational numbers - * - * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30 - **/ - "sub": function(a, b) { - - parse(a, b); - return new Fraction( - this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"], - this["d"] * P["d"] - ); - }, - - /** - * Multiplies two rational numbers - * - * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111 - **/ - "mul": function(a, b) { - - parse(a, b); - return new Fraction( - this["s"] * P["s"] * this["n"] * P["n"], - this["d"] * P["d"] - ); - }, - - /** - * Divides two rational numbers - * - * Ex: new Fraction("-17.(345)").inverse().div(3) - **/ - "div": function(a, b) { - - parse(a, b); - return new Fraction( - this["s"] * P["s"] * this["n"] * P["d"], - this["d"] * P["n"] - ); - }, - - /** - * Clones the actual object - * - * Ex: new Fraction("-17.(345)").clone() - **/ - "clone": function() { - return new Fraction(this); - }, - - /** - * Calculates the modulo of two rational numbers - a more precise fmod - * - * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6) - **/ - "mod": function(a, b) { - - if (isNaN(this['n']) || isNaN(this['d'])) { - return new Fraction(NaN); - } - - if (a === undefined) { - return new Fraction(this["s"] * this["n"] % this["d"], 1); - } - - parse(a, b); - if (0 === P["n"] && 0 === this["d"]) { - Fraction(0, 0); // Throw DivisionByZero - } - - /* - * First silly attempt, kinda slow - * - return that["sub"]({ - "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)), - "d": num["d"], - "s": this["s"] - });*/ - - /* - * New attempt: a1 / b1 = a2 / b2 * q + r - * => b2 * a1 = a2 * b1 * q + b1 * b2 * r - * => (b2 * a1 % a2 * b1) / (b1 * b2) - */ - return new Fraction( - this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]), - P["d"] * this["d"] - ); - }, - - /** - * Calculates the fractional gcd of two rational numbers - * - * Ex: new Fraction(5,8).gcd(3,7) => 1/56 - */ - "gcd": function(a, b) { - - parse(a, b); - - // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d) - - return new Fraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]); - }, - - /** - * Calculates the fractional lcm of two rational numbers - * - * Ex: new Fraction(5,8).lcm(3,7) => 15 - */ - "lcm": function(a, b) { - - parse(a, b); - - // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d) - - if (P["n"] === 0 && this["n"] === 0) { - return new Fraction; - } - return new Fraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"])); - }, - - /** - * Calculates the ceil of a rational number - * - * Ex: new Fraction('4.(3)').ceil() => (5 / 1) - **/ - "ceil": function(places) { - - places = Math.pow(10, places || 0); - - if (isNaN(this["n"]) || isNaN(this["d"])) { - return new Fraction(NaN); - } - return new Fraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places); - }, - - /** - * Calculates the floor of a rational number - * - * Ex: new Fraction('4.(3)').floor() => (4 / 1) - **/ - "floor": function(places) { - - places = Math.pow(10, places || 0); - - if (isNaN(this["n"]) || isNaN(this["d"])) { - return new Fraction(NaN); - } - return new Fraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places); - }, - - /** - * Rounds a rational numbers - * - * Ex: new Fraction('4.(3)').round() => (4 / 1) - **/ - "round": function(places) { - - places = Math.pow(10, places || 0); - - if (isNaN(this["n"]) || isNaN(this["d"])) { - return new Fraction(NaN); - } - return new Fraction(Math.round(places * this["s"] * this["n"] / this["d"]), places); - }, - - /** - * Gets the inverse of the fraction, means numerator and denominator are exchanged - * - * Ex: new Fraction([-3, 4]).inverse() => -4 / 3 - **/ - "inverse": function() { - - return new Fraction(this["s"] * this["d"], this["n"]); - }, - - /** - * Calculates the fraction to some rational exponent, if possible - * - * Ex: new Fraction(-1,2).pow(-3) => -8 - */ - "pow": function(a, b) { - - parse(a, b); - - // Trivial case when exp is an integer - - if (P['d'] === 1) { - - if (P['s'] < 0) { - return new Fraction(Math.pow(this['s'] * this["d"], P['n']), Math.pow(this["n"], P['n'])); - } else { - return new Fraction(Math.pow(this['s'] * this["n"], P['n']), Math.pow(this["d"], P['n'])); - } - } - - // Negative roots become complex - // (-a/b)^(c/d) = x - // <=> (-1)^(c/d) * (a/b)^(c/d) = x - // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x # rotate 1 by 180° - // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula in Q ( https://proofwiki.org/wiki/De_Moivre%27s_Formula/Rational_Index ) - // From which follows that only for c=0 the root is non-complex. c/d is a reduced fraction, so that sin(c/dpi)=0 occurs for d=1, which is handled by our trivial case. - if (this['s'] < 0) return null; - - // Now prime factor n and d - var N = factorize(this['n']); - var D = factorize(this['d']); - - // Exponentiate and take root for n and d individually - var n = 1; - var d = 1; - for (var k in N) { - if (k === '1') continue; - if (k === '0') { - n = 0; - break; - } - N[k]*= P['n']; - - if (N[k] % P['d'] === 0) { - N[k]/= P['d']; - } else return null; - n*= Math.pow(k, N[k]); - } - - for (var k in D) { - if (k === '1') continue; - D[k]*= P['n']; - - if (D[k] % P['d'] === 0) { - D[k]/= P['d']; - } else return null; - d*= Math.pow(k, D[k]); - } - - if (P['s'] < 0) { - return new Fraction(d, n); - } - return new Fraction(n, d); - }, - - /** - * Check if two rational numbers are the same - * - * Ex: new Fraction(19.6).equals([98, 5]); - **/ - "equals": function(a, b) { - - parse(a, b); - return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0 - }, - - /** - * Check if two rational numbers are the same - * - * Ex: new Fraction(19.6).equals([98, 5]); - **/ - "compare": function(a, b) { - - parse(a, b); - var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]); - return (0 < t) - (t < 0); - }, - - "simplify": function(eps) { - - // First naive implementation, needs improvement - - if (isNaN(this['n']) || isNaN(this['d'])) { - return this; - } - - var cont = this['abs']()['toContinued'](); - - eps = eps || 0.001; - - function rec(a) { - if (a.length === 1) - return new Fraction(a[0]); - return rec(a.slice(1))['inverse']()['add'](a[0]); - } - - for (var i = 0; i < cont.length; i++) { - var tmp = rec(cont.slice(0, i + 1)); - if (tmp['sub'](this['abs']())['abs']().valueOf() < eps) { - return tmp['mul'](this['s']); - } - } - return this; - }, - - /** - * Check if two rational numbers are divisible - * - * Ex: new Fraction(19.6).divisible(1.5); - */ - "divisible": function(a, b) { - - parse(a, b); - return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"]))); - }, - - /** - * Returns a decimal representation of the fraction - * - * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183 - **/ - 'valueOf': function() { - - return this["s"] * this["n"] / this["d"]; - }, - - /** - * Returns a string-fraction representation of a Fraction object - * - * Ex: new Fraction("1.'3'").toFraction() => "4 1/3" - **/ - 'toFraction': function(excludeWhole) { - - var whole, str = ""; - var n = this["n"]; - var d = this["d"]; - if (this["s"] < 0) { - str += '-'; - } - - if (d === 1) { - str += n; - } else { - - if (excludeWhole && (whole = Math.floor(n / d)) > 0) { - str += whole; - str += " "; - n %= d; - } - - str += n; - str += '/'; - str += d; - } - return str; - }, - - /** - * Returns a latex representation of a Fraction object - * - * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}" - **/ - 'toLatex': function(excludeWhole) { - - var whole, str = ""; - var n = this["n"]; - var d = this["d"]; - if (this["s"] < 0) { - str += '-'; - } - - if (d === 1) { - str += n; - } else { - - if (excludeWhole && (whole = Math.floor(n / d)) > 0) { - str += whole; - n %= d; - } - - str += "\\frac{"; - str += n; - str += '}{'; - str += d; - str += '}'; - } - return str; - }, - - /** - * Returns an array of continued fraction elements - * - * Ex: new Fraction("7/8").toContinued() => [0,1,7] - */ - 'toContinued': function() { - - var t; - var a = this['n']; - var b = this['d']; - var res = []; - - if (isNaN(a) || isNaN(b)) { - return res; - } - - do { - res.push(Math.floor(a / b)); - t = a % b; - a = b; - b = t; - } while (a !== 1); - - return res; - }, - - /** - * Creates a string representation of a fraction with all digits - * - * Ex: new Fraction("100.'91823'").toString() => "100.(91823)" - **/ - 'toString': function(dec) { - - var g; - var N = this["n"]; - var D = this["d"]; - - if (isNaN(N) || isNaN(D)) { - return "NaN"; - } - - dec = dec || 15; // 15 = decimal places when no repetation - - var cycLen = cycleLen(N, D); // Cycle length - var cycOff = cycleStart(N, D, cycLen); // Cycle start - - var str = this['s'] === -1 ? "-" : ""; - - str += N / D | 0; - - N %= D; - N *= 10; - - if (N) - str += "."; - - if (cycLen) { - - for (var i = cycOff; i--;) { - str += N / D | 0; - N %= D; - N *= 10; - } - str += "("; - for (var i = cycLen; i--;) { - str += N / D | 0; - N %= D; - N *= 10; - } - str += ")"; - } else { - for (var i = dec; N && i--;) { - str += N / D | 0; - N %= D; - N *= 10; - } - } - return str; - } - }; - - if (typeof define === "function" && define["amd"]) { - define([], function() { - return Fraction; - }); - } else if (typeof exports === "object") { - Object.defineProperty(Fraction, "__esModule", { 'value': true }); - Fraction['default'] = Fraction; - Fraction['Fraction'] = Fraction; - module['exports'] = Fraction; - } else { - root['Fraction'] = Fraction; - } - - - export default Fraction; \ No newline at end of file diff --git a/fraction.mjs b/fraction.mjs new file mode 100644 index 00000000..f95ee90a --- /dev/null +++ b/fraction.mjs @@ -0,0 +1,84 @@ +import Fraction from 'fraction.js'; +import { TimeSpan } from './strudel.mjs'; + +// Returns the start of the cycle. +Fraction.prototype.sam = function () { + return this.floor(); +}; + +// Returns the start of the next cycle. +Fraction.prototype.nextSam = function () { + return this.sam().add(1); +}; + +// Returns a TimeSpan representing the begin and end of the Time value's cycle +Fraction.prototype.wholeCycle = function () { + return new TimeSpan(this.sam(), this.nextSam()); +}; + +Fraction.prototype.lt = function (other) { + return this.compare(other) < 0; +}; + +Fraction.prototype.gt = function (other) { + return this.compare(other) > 0; +}; + +Fraction.prototype.lte = function (other) { + return this.compare(other) <= 0; +}; + +Fraction.prototype.gte = function (other) { + return this.compare(other) >= 0; +}; + +Fraction.prototype.eq = function (other) { + return this.compare(other) == 0; +}; + +Fraction.prototype.max = function (other) { + return this.gt(other) ? this : other; +}; + +Fraction.prototype.min = function (other) { + return this.lt(other) ? this : other; +}; + +Fraction.prototype.show = function () { + return this.s * this.n + '/' + this.d; +}; + +Fraction.prototype.or = function (other) { + return this.eq(0) ? other : this; +}; + +const fraction = (n) => { + if (typeof n === 'number') { + /* + https://github.com/infusion/Fraction.js/#doubles + „If you pass a double as it is, Fraction.js will perform a number analysis based on Farey Sequences." + „If you want to keep the number as it is, convert it to a string, as the string parser will not perform any further observations“ + + -> those farey sequences turn out to make pattern querying ~20 times slower! always use strings! + -> still, some optimizations could be done: .mul .div .add .sub calls still use numbers + */ + n = String(n); + } + return Fraction(n); +}; + +export default fraction; + +// "If you concern performance, cache Fraction.js objects and pass arrays/objects.“ +// -> tested memoized version, but it's slower than unmemoized, even with repeated evaluation +/* const memo = {}; +const memoizedFraction = (n) => { + if (typeof n === 'number') { + n = String(n); + } + if (memo[n] !== undefined) { + return memo[n]; + } + memo[n] = Fraction(n); + return memo[n]; +}; */ diff --git a/repl/src/euclid.mjs b/repl/src/euclid.mjs index a395d42d..208254d9 100644 --- a/repl/src/euclid.mjs +++ b/repl/src/euclid.mjs @@ -1,7 +1,7 @@ import { Pattern, timeCat } from '../../strudel.mjs'; import bjork from 'bjork'; import { rotate } from '../../util.mjs'; -import Fraction from 'fraction.js'; +import Fraction from '../../fraction.js'; const euclid = (pulses, steps, rotation = 0) => { const b = bjork(steps, pulses); diff --git a/repl/src/parse.ts b/repl/src/parse.ts index 87cf6edd..215c5a3c 100644 --- a/repl/src/parse.ts +++ b/repl/src/parse.ts @@ -12,7 +12,7 @@ const applyOptions = (parent: any) => (pat: any, i: number) => { if (operator) { switch (operator.type_) { case 'stretch': - const speed = new Fraction(operator.arguments_.amount).inverse(); + const speed = Fraction(operator.arguments_.amount).inverse(); return reify(pat).fast(speed); case 'bjorklund': return pat.euclid(operator.arguments_.pulse, operator.arguments_.step, operator.arguments_.rotation); @@ -56,7 +56,7 @@ function resolveReplications(ast) { options_: { operator: { type_: 'stretch', - arguments_: { amount: new Fraction(replicate).inverse().toString() }, + arguments_: { amount: Fraction(replicate).inverse().toString() }, }, }, }, diff --git a/strudel.mjs b/strudel.mjs index 9500102a..8efc8c69 100644 --- a/strudel.mjs +++ b/strudel.mjs @@ -1,4 +1,4 @@ -import Fraction from './fraction.js' +import Fraction from './fraction.mjs' import { compose } from 'ramda'; // will remove this as soon as compose is implemented here import { isNote, toMidi } from './util.mjs'; @@ -30,57 +30,6 @@ export function curry(func, overload) { return fn; } -// Returns the start of the cycle. -Fraction.prototype.sam = function() { - return this.floor(); -} - -// Returns the start of the next cycle. -Fraction.prototype.nextSam = function() { - return this.sam().add(1) -} - -// Returns a TimeSpan representing the begin and end of the Time value's cycle -Fraction.prototype.wholeCycle = function() { - return new TimeSpan(this.sam(), this.nextSam()) -} - -Fraction.prototype.lt = function(other) { - return this.compare(other) < 0 -} - -Fraction.prototype.gt = function(other) { - return this.compare(other) > 0 -} - -Fraction.prototype.lte = function(other) { - return this.compare(other) <= 0 -} - -Fraction.prototype.gte = function(other) { - return this.compare(other) >= 0 -} - -Fraction.prototype.eq = function(other) { - return this.compare(other) == 0 -} - -Fraction.prototype.max = function(other) { - return this.gt(other) ? this : other -} - -Fraction.prototype.min = function(other) { - return this.lt(other) ? this : other -} - -Fraction.prototype.show = function () { - return (this.s * this.n) + "/" + this.d -} - -Fraction.prototype.or = function(other) { - return this.eq(0) ? other : this -} - class TimeSpan { constructor(begin, end) { this.begin = Fraction(begin)