Readded old voxel system

This commit is contained in:
Elias Stepanik 2025-06-07 16:23:48 +02:00
parent 0329a9015d
commit 39b7c7cf41
25 changed files with 1096 additions and 12 deletions

View File

@ -14,4 +14,7 @@ rand = "0.8.5"
serde = { version = "1.0", features = ["derive"] }
toml = "0.8"
big_space = "0.9.1"
noise = "0.9.0"
noise = "0.9.0"
itertools = "0.13.0"
bitvec = "1.0.1"
smallvec = "1.14.0"

View File

@ -0,0 +1,3 @@
#https://github.com/KhronosGroup/KTX-Software/releases
toktx --t2 --cubemap --target_type RGBA --zcmp 18 --genmipmap sky.ktx2 right.jpg left.jpg top.jpg bottom.jpg front.jpg back.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 723 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 274 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 462 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 588 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 525 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 338 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.9 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.2 MiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.0 MiB

Binary file not shown.

View File

@ -7,12 +7,11 @@ use big_space::prelude::GridCell;
use noise::{Fbm, NoiseFn, Perlin};
use crate::plugins::big_space::big_space_plugin::RootGrid;
use crate::plugins::environment::systems::camera_system::CameraController;
use crate::plugins::environment::systems::planet_system::PlanetMaker;
use crate::plugins::environment::systems::voxels::structure::*;
pub fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
root: Res<RootGrid>,
) {
let unit_size = 1.0;
@ -27,13 +26,15 @@ pub fn setup(
let color = Color::rgb(0.2, 0.8, 0.2);
/*generate_voxel_rect(&mut octree,color);*/
generate_voxel_sphere(&mut octree, 10, color);
commands.spawn(
(
Transform::default(),
octree
)
);
commands.entity(root.0).with_children(|parent| {
parent.spawn(
(
Transform::default(),
octree
)
);
});
}
fn generate_voxel_sphere(

View File

@ -0,0 +1,145 @@
use bevy::prelude::*;
use crate::plugins::environment::systems::voxels::structure::*;
/// Visualize each node of the octree as a scaled cuboid, **center-based**.
/// `octree_tf.translation` is the world-space center of the root bounding box.
pub fn visualize_octree_system(
mut gizmos: Gizmos,
octree_query: Query<(&SparseVoxelOctree, &Transform)>,
) {
for (octree, octree_tf) in octree_query.iter() {
// The root node covers [-size/2..+size/2], so half_size is:
let half_size = octree.size * 0.5;
// Draw a translucent cuboid for the root
gizmos.cuboid(
Transform::from_translation(octree_tf.translation)
.with_scale(Vec3::splat(octree.size)),
Color::rgba(1.0, 1.0, 0.0, 0.15),
);
// Recursively draw children:
// Start from depth=0. The node at depth=0 has bounding side = octree.size.
visualize_recursive_center(
&mut gizmos,
&octree.root,
octree_tf.translation, // center of root in world
octree.size,
0,
octree.max_depth,
);
}
}
/// Recursively draws cuboids for each node.
/// We follow the same indexing as insert_recursive, i.e. bit patterns:
/// i=0 => child in (-x,-y,-z) quadrant,
/// i=1 => (+x,-y,-z), i=2 => (-x,+y,-z), etc.
fn visualize_recursive_center(
gizmos: &mut Gizmos,
node: &OctreeNode,
parent_center: Vec3,
parent_size: f32,
depth: u32,
max_depth: u32,
) {
if depth >= max_depth {
return;
}
if let Some(children) = &node.children {
// Each child is half the parents size
let child_size = parent_size * 0.5;
let half = child_size * 0.5;
for (i, child) in children.iter().enumerate() {
// For i in [0..8], bits: x=1, y=2, z=4
let offset_x = if (i & 1) != 0 { half } else { -half };
let offset_y = if (i & 2) != 0 { half } else { -half };
let offset_z = if (i & 4) != 0 { half } else { -half };
let child_center = parent_center + Vec3::new(offset_x, offset_y, offset_z);
// Draw the child bounding box
gizmos.cuboid(
Transform::from_translation(child_center).with_scale(Vec3::splat(child_size)),
Color::rgba(0.5, 1.0, 0.5, 0.15), // greenish
);
// Recurse
visualize_recursive_center(
gizmos,
child,
child_center,
child_size,
depth + 1,
max_depth,
);
}
} else {
// If node.is_leaf && node.voxel.is_some(), draw a smaller marker
if node.is_leaf {
if let Some(voxel) = node.voxel {
// We'll choose a size that's a fraction of the parent's size.
// For example, 25% of the parent bounding box dimension.
let leaf_size = parent_size * 0.25;
// Draw a small cuboid at the same center as the parent node.
gizmos.cuboid(
Transform::from_translation(parent_center)
.with_scale(Vec3::splat(leaf_size)),
voxel.color,
);
}
}
}
}
#[allow(dead_code)]
pub fn draw_grid(
mut gizmos: Gizmos,
camera_query: Query<&Transform, With<Camera>>,
octree_query: Query<(&SparseVoxelOctree, &Transform)>,
) {
let camera_tf = camera_query.single();
let camera_pos = camera_tf.translation;
for (octree, octree_tf) in octree_query.iter() {
let half_size = octree.size * 0.5;
let root_center = octree_tf.translation;
// Voxel spacing at max depth
let spacing = octree.get_spacing_at_depth(octree.max_depth);
let grid_count = (octree.size / spacing) as i32;
// We'll define the bounding region as [center-half_size .. center+half_size].
// So the min corner is (root_center - half_size).
let min_corner = root_center - Vec3::splat(half_size);
// Draw lines in X & Z directions (like a ground plane).
for i in 0..=grid_count {
let offset = i as f32 * spacing;
// 1) line along Z
let x = min_corner.x + offset;
let z1 = min_corner.z;
let z2 = min_corner.z + (grid_count as f32 * spacing);
let p1 = Vec3::new(x, min_corner.y, z1);
let p2 = Vec3::new(x, min_corner.y, z2);
// offset by -camera_pos for stable Gizmos in large coords
let p1_f32 = p1 - camera_pos;
let p2_f32 = p2 - camera_pos;
gizmos.line(p1_f32, p2_f32, Color::WHITE);
// 2) line along X
let z = min_corner.z + offset;
let x1 = min_corner.x;
let x2 = min_corner.x + (grid_count as f32 * spacing);
let p3 = Vec3::new(x1, min_corner.y, z) - camera_pos;
let p4 = Vec3::new(x2, min_corner.y, z) - camera_pos;
gizmos.line(p3, p4, Color::WHITE);
}
}
}

View File

@ -0,0 +1,247 @@
use bevy::prelude::*;
use crate::plugins::environment::systems::voxels::structure::*;
impl SparseVoxelOctree {
pub fn ray_intersects_aabb(&self,ray: &Ray, aabb: &AABB) -> bool {
let inv_dir = 1.0 / ray.direction;
let t1 = (aabb.min - ray.origin) * inv_dir;
let t2 = (aabb.max - ray.origin) * inv_dir;
let t_min = t1.min(t2);
let t_max = t1.max(t2);
let t_enter = t_min.max_element();
let t_exit = t_max.min_element();
t_enter <= t_exit && t_exit >= 0.0
}
/// Returns the size of one voxel at the given depth.
pub fn get_spacing_at_depth(&self, depth: u32) -> f32 {
let effective = depth.min(self.max_depth);
self.size / (2_u32.pow(effective)) as f32
}
/// Center-based: [-size/2..+size/2]. Shift +half_size => [0..size], floor, shift back.
pub fn normalize_to_voxel_at_depth(&self, position: Vec3, depth: u32) -> Vec3 {
// Convert world coordinate to normalized [0,1] space.
let half_size = self.size * 0.5;
// Shift to [0, self.size]
let shifted = (position + Vec3::splat(half_size)) / self.size;
// Determine the number of voxels along an edge at the given depth.
let voxel_count = 2_u32.pow(depth) as f32;
// Get the voxel index (as a float) and then compute the center in normalized space.
let voxel_index = (shifted * voxel_count).floor();
let voxel_center = (voxel_index + Vec3::splat(0.5)) / voxel_count;
voxel_center
}
pub fn denormalize_voxel_center(&self, voxel_center: Vec3) -> Vec3 {
let half_size = self.size * 0.5;
// Convert the normalized voxel center back to world space.
voxel_center * self.size - Vec3::splat(half_size)
}
pub fn compute_child_bounds(&self, bounds: &AABB, index: usize) -> AABB {
let min = bounds.min;
let max = bounds.max;
let center = (min + max) / 2.0;
let x_min = if (index & 1) == 0 { min.x } else { center.x };
let x_max = if (index & 1) == 0 { center.x } else { max.x };
let y_min = if (index & 2) == 0 { min.y } else { center.y };
let y_max = if (index & 2) == 0 { center.y } else { max.y };
let z_min = if (index & 4) == 0 { min.z } else { center.z };
let z_max = if (index & 4) == 0 { center.z } else { max.z };
let child_bounds = AABB {
min: Vec3::new(x_min, y_min, z_min),
max: Vec3::new(x_max, y_max, z_max),
};
child_bounds
}
pub fn ray_intersects_aabb_with_normal(
&self,
ray: &Ray,
aabb: &AABB,
) -> Option<(f32, f32, Vec3)> {
// Define a safe inverse function to avoid division by zero.
let safe_inv = |d: f32| if d.abs() < 1e-6 { 1e6 } else { 1.0 / d };
let inv_dir = Vec3::new(
safe_inv(ray.direction.x),
safe_inv(ray.direction.y),
safe_inv(ray.direction.z),
);
let t1 = (aabb.min - ray.origin) * inv_dir;
let t2 = (aabb.max - ray.origin) * inv_dir;
let tmin = t1.min(t2);
let tmax = t1.max(t2);
let t_enter = tmin.max_element();
let t_exit = tmax.min_element();
if t_enter <= t_exit && t_exit >= 0.0 {
let epsilon = 1e-6;
let mut normal = Vec3::ZERO;
// Determine which face was hit by comparing t_enter to the computed values.
if (t_enter - t1.x).abs() < epsilon || (t_enter - t2.x).abs() < epsilon {
normal = Vec3::new(if ray.direction.x < 0.0 { 1.0 } else { -1.0 }, 0.0, 0.0);
} else if (t_enter - t1.y).abs() < epsilon || (t_enter - t2.y).abs() < epsilon {
normal = Vec3::new(0.0, if ray.direction.y < 0.0 { 1.0 } else { -1.0 }, 0.0);
} else if (t_enter - t1.z).abs() < epsilon || (t_enter - t2.z).abs() < epsilon {
normal = Vec3::new(0.0, 0.0, if ray.direction.z < 0.0 { 1.0 } else { -1.0 });
}
Some((t_enter, t_exit, normal))
} else {
None
}
}
/// Checks if (x,y,z) is within [-size/2..+size/2].
pub fn contains(&self, x: f32, y: f32, z: f32) -> bool {
let half_size = self.size / 2.0;
let eps = 1e-6;
(x >= -half_size - eps && x < half_size + eps)
&& (y >= -half_size - eps && y < half_size + eps)
&& (z >= -half_size - eps && z < half_size + eps)
}
/// Retrieve a voxel at world coordinates by normalizing and looking up.
pub fn get_voxel_at_world_coords(&self, position: Vec3) -> Option<&Voxel> {
let aligned = self.normalize_to_voxel_at_depth(position, self.max_depth);
self.get_voxel_at(aligned.x, aligned.y, aligned.z)
}
pub fn local_to_world(&self, local_pos: Vec3) -> Vec3 {
// Half the total octree size, used to shift the center to the origin.
let half_size = self.size * 0.5;
// Convert local coordinate to world space:
// 1. Subtract 0.5 to center the coordinate at zero (range becomes [-0.5, 0.5])
// 2. Multiply by the total size to scale into world units.
// 3. Add half_size to shift from a centerbased system to one starting at zero.
(local_pos - Vec3::splat(0.5)) * self.size + Vec3::splat(half_size)
}
/// Helper function to recursively traverse the octree to a specific depth.
fn get_node_at_depth(
node: &OctreeNode,
x: f32,
y: f32,
z: f32,
depth: u32,
) -> Option<&OctreeNode> {
if depth == 0 {
return Some(node); // We've reached the desired depth
}
if let Some(ref children) = node.children {
// Determine which child to traverse into
let epsilon = 1e-6;
let index = ((x >= 0.5 - epsilon) as usize)
+ ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
// Recurse into the correct child
Self::get_node_at_depth(
&children[index],
adjust_coord(x),
adjust_coord(y),
adjust_coord(z),
depth - 1,
)
} else {
None // Node has no children at this depth
}
}
pub fn has_volume(&self, node: &OctreeNode) -> bool {
// Check if this node is a leaf with a voxel
if node.is_leaf && node.voxel.is_some() {
return true;
}
// If the node has children, recursively check them
if let Some(children) = &node.children {
for child in children.iter() {
if self.has_volume(child) {
return true; // If any child has a voxel, the chunk has volume
}
}
}
// If no voxel found in this node or its children
false
}
}
/// Returns the (face_normal, local_offset) for the given neighbor direction.
/// - `dx, dy, dz`: The integer direction of the face (-1,0,0 / 1,0,0 / etc.)
/// - `voxel_size_f`: The world size of a single voxel (e.g. step as f32).
pub fn face_orientation(dx: f32, dy: f32, dz: f32, voxel_size_f: f32) -> (Vec3, Vec3) {
// We'll do a match on the direction
match (dx, dy, dz) {
// Negative X => face normal is (-1, 0, 0), local offset is -voxel_size/2 in X
(-1.0, 0.0, 0.0) => {
let normal = Vec3::new(-1.0, 0.0, 0.0);
let offset = Vec3::new(-voxel_size_f * 0.5, 0.0, 0.0);
(normal, offset)
}
// Positive X
(1.0, 0.0, 0.0) => {
let normal = Vec3::new(1.0, 0.0, 0.0);
let offset = Vec3::new(voxel_size_f * 0.5, 0.0, 0.0);
(normal, offset)
}
// Negative Y
(0.0, -1.0, 0.0) => {
let normal = Vec3::new(0.0, -1.0, 0.0);
let offset = Vec3::new(0.0, -voxel_size_f * 0.5, 0.0);
(normal, offset)
}
// Positive Y
(0.0, 1.0, 0.0) => {
let normal = Vec3::new(0.0, 1.0, 0.0);
let offset = Vec3::new(0.0, voxel_size_f * 0.5, 0.0);
(normal, offset)
}
// Negative Z
(0.0, 0.0, -1.0) => {
let normal = Vec3::new(0.0, 0.0, -1.0);
let offset = Vec3::new(0.0, 0.0, -voxel_size_f * 0.5);
(normal, offset)
}
// Positive Z
(0.0, 0.0, 1.0) => {
let normal = Vec3::new(0.0, 0.0, 1.0);
let offset = Vec3::new(0.0, 0.0, voxel_size_f * 0.5);
(normal, offset)
}
// If the direction is not one of the 6 axis directions, you might skip or handle differently
_ => {
// For safety, we can panic or return a default.
// But typically you won't call face_orientation with an invalid direction
panic!("Invalid face direction: ({}, {}, {})", dx, dy, dz);
}
}
}

View File

@ -0,0 +1,5 @@
pub mod debug;
pub mod helper;
pub mod octree;
pub mod structure;
pub mod rendering;

View File

@ -0,0 +1,393 @@
use std::collections::{HashMap, HashSet};
use bevy::asset::Assets;
use bevy::color::Color;
use bevy::math::{DQuat, DVec3};
use bevy::prelude::*;
use bevy::render::mesh::{Indices, PrimitiveTopology, VertexAttributeValues};
use bevy::render::render_asset::RenderAssetUsages;
use crate::plugins::environment::systems::voxels::structure::{DirtyVoxel, OctreeNode, Ray, SparseVoxelOctree, Voxel, AABB, NEIGHBOR_OFFSETS};
impl SparseVoxelOctree {
/// Creates a new octree with the specified max depth, size, and wireframe visibility.
pub fn new(max_depth: u32, size: f32, show_wireframe: bool, show_world_grid: bool, show_chunks: bool) -> Self {
Self {
root: OctreeNode::new(),
max_depth,
size,
show_wireframe,
show_world_grid,
show_chunks,
dirty: Vec::new(),
}
}
pub fn insert(&mut self, position: Vec3, voxel: Voxel) {
// Align to the center of the voxel at max_depth
let mut aligned = self.normalize_to_voxel_at_depth(position, self.max_depth);
let mut world_center = self.denormalize_voxel_center(aligned);
// Expand as needed using the denormalized position.
while !self.contains(world_center.x, world_center.y, world_center.z) {
self.expand_root(world_center.x, world_center.y, world_center.z);
// Recompute aligned and world_center after expansion.
aligned = self.normalize_to_voxel_at_depth(position, self.max_depth);
world_center = self.denormalize_voxel_center(aligned);
}
let dirty_voxel = DirtyVoxel{
position: aligned,
};
self.dirty.push(dirty_voxel);
Self::insert_recursive(&mut self.root, aligned, voxel, self.max_depth);
}
fn insert_recursive(node: &mut OctreeNode, position: Vec3, voxel: Voxel, depth: u32) {
if depth == 0 {
node.voxel = Some(voxel);
node.is_leaf = true;
return;
}
let epsilon = 1e-6;
// Determine octant index by comparing with 0.5
let index = ((position.x >= 0.5 - epsilon) as usize)
+ ((position.y >= 0.5 - epsilon) as usize * 2)
+ ((position.z >= 0.5 - epsilon) as usize * 4);
// If there are no children, create them.
if node.children.is_none() {
node.children = Some(Box::new(core::array::from_fn(|_| OctreeNode::new())));
node.is_leaf = false;
}
if let Some(ref mut children) = node.children {
// Adjust coordinate into the childs [0, 1] range.
let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
let child_pos = Vec3::new(
adjust_coord(position.x),
adjust_coord(position.y),
adjust_coord(position.z),
);
Self::insert_recursive(&mut children[index], child_pos, voxel, depth - 1);
}
}
pub fn remove(&mut self, position: Vec3) {
let aligned = self.normalize_to_voxel_at_depth(position, self.max_depth);
let dirty_voxel = DirtyVoxel{
position: aligned,
};
self.dirty.push(dirty_voxel);
Self::remove_recursive(&mut self.root, aligned.x, aligned.y, aligned.z, self.max_depth);
}
fn remove_recursive(
node: &mut OctreeNode,
x: f32,
y: f32,
z: f32,
depth: u32,
) -> bool {
if depth == 0 {
if node.voxel.is_some() {
node.voxel = None;
node.is_leaf = false;
return true;
} else {
return false;
}
}
if node.children.is_none() {
return false;
}
let epsilon = 1e-6;
let index = ((x >= 0.5 - epsilon) as usize)
+ ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
let child = &mut node.children.as_mut().unwrap()[index];
let should_prune_child = Self::remove_recursive(
child,
adjust_coord(x),
adjust_coord(y),
adjust_coord(z),
depth - 1,
);
if should_prune_child {
// remove the child node
node.children.as_mut().unwrap()[index] = OctreeNode::new();
}
// Check if all children are empty
let all_children_empty = node
.children
.as_ref()
.unwrap()
.iter()
.all(|child| child.is_empty());
if all_children_empty {
node.children = None;
node.is_leaf = true;
return node.voxel.is_none();
}
false
}
fn expand_root(&mut self, _x: f32, _y: f32, _z: f32) {
info!("Root expanding ...");
// Save the old root and its size.
let old_root = std::mem::replace(&mut self.root, OctreeNode::new());
let old_size = self.size;
// Update the octree's size and depth.
self.size *= 2.0;
self.max_depth += 1;
// Reinsert each voxel from the old tree.
let voxels = Self::collect_voxels_from_node(&old_root, old_size);
for (world_pos, voxel, _depth) in voxels {
self.insert(world_pos, voxel);
}
}
/// Helper: Collect all voxels from a given octree node recursively.
/// The coordinate system here assumes the node covers [old_size/2, +old_size/2] in each axis.
fn collect_voxels_from_node(node: &OctreeNode, old_size: f32) -> Vec<(Vec3, Voxel, u32)> {
let mut voxels = Vec::new();
Self::collect_voxels_recursive(node, -old_size / 2.0, -old_size / 2.0, -old_size / 2.0, old_size, 0, &mut voxels);
voxels
}
fn collect_voxels_recursive(
node: &OctreeNode,
x: f32,
y: f32,
z: f32,
size: f32,
depth: u32,
out: &mut Vec<(Vec3, Voxel, u32)>,
) {
if node.is_leaf {
if let Some(voxel) = node.voxel {
// Compute the center of this node's region.
let center = Vec3::new(x + size / 2.0, y + size / 2.0, z + size / 2.0);
out.push((center, voxel, depth));
}
}
if let Some(children) = &node.children {
let half = size / 2.0;
for (i, child) in children.iter().enumerate() {
let offset_x = if (i & 1) != 0 { half } else { 0.0 };
let offset_y = if (i & 2) != 0 { half } else { 0.0 };
let offset_z = if (i & 4) != 0 { half } else { 0.0 };
Self::collect_voxels_recursive(child, x + offset_x, y + offset_y, z + offset_z, half, depth + 1, out);
}
}
}
pub fn traverse(&self) -> Vec<(Vec3, Color, u32)> {
let mut voxels = Vec::new();
// Start at the normalized center (0.5, 0.5, 0.5) rather than (0,0,0)
Self::traverse_recursive(
&self.root,
Vec3::splat(0.5), // normalized center of the root cell
1.0, // full normalized cell size
0,
&mut voxels,
self,
);
voxels
}
fn traverse_recursive(
node: &OctreeNode,
local_center: Vec3,
size: f32,
depth: u32,
out: &mut Vec<(Vec3, Color, u32)>,
octree: &SparseVoxelOctree,
) {
// If a leaf contains a voxel, record its world-space center
if node.is_leaf {
if let Some(voxel) = node.voxel {
out.push((octree.denormalize_voxel_center(local_center), voxel.color, depth));
}
}
// If the node has children, subdivide the cell into 8 subcells.
if let Some(ref children) = node.children {
let offset = size / 4.0; // child center offset from parent center
let new_size = size / 2.0; // each child cell's size in normalized space
for (i, child) in children.iter().enumerate() {
// Compute each axis' offset: use +offset if the bit is set, else -offset.
let dx = if (i & 1) != 0 { offset } else { -offset };
let dy = if (i & 2) != 0 { offset } else { -offset };
let dz = if (i & 4) != 0 { offset } else { -offset };
let child_center = local_center + Vec3::new(dx, dy, dz);
Self::traverse_recursive(child, child_center, new_size, depth + 1, out, octree);
}
}
}
/// Retrieve a voxel from the octree if it exists (x,y,z in [-0.5..+0.5] range).
pub fn get_voxel_at(&self, x: f32, y: f32, z: f32) -> Option<&Voxel> {
Self::get_voxel_recursive(&self.root, x, y, z)
}
fn get_voxel_recursive(node: &OctreeNode, x: f32, y: f32, z: f32) -> Option<&Voxel> {
if node.is_leaf {
return node.voxel.as_ref();
}
if let Some(children) = &node.children {
let epsilon = 1e-6;
let index = ((x >= 0.5 - epsilon) as usize)
+ ((y >= 0.5 - epsilon) as usize * 2)
+ ((z >= 0.5 - epsilon) as usize * 4);
let adjust_coord = |coord: f32| {
if coord >= 0.5 - epsilon {
(coord - 0.5) * 2.0
} else {
coord * 2.0
}
};
Self::get_voxel_recursive(
&children[index],
adjust_coord(x),
adjust_coord(y),
adjust_coord(z),
)
} else {
None
}
}
/// Checks if there is a neighbor voxel at the specified direction from the given world coordinates at the specified depth.
/// The offsets are directions (-1, 0, 1) for x, y, z.
pub fn has_neighbor(
&self,
position: Vec3,
offset_x: i32,
offset_y: i32,
offset_z: i32,
depth: u32,
) -> bool {
let aligned = self.normalize_to_voxel_at_depth(position, depth);
let voxel_count = 2_u32.pow(depth) as f32;
// Normalized voxel size is 1/voxel_count
let norm_voxel_size = 1.0 / voxel_count;
let neighbor = Vec3::new(
aligned.x + (offset_x as f32) * norm_voxel_size,
aligned.y + (offset_y as f32) * norm_voxel_size,
aligned.z + (offset_z as f32) * norm_voxel_size,
);
// Convert the normalized neighbor coordinate back to world space
let half_size = self.size * 0.5;
let neighbor_world = neighbor * self.size - Vec3::splat(half_size);
if !self.contains(neighbor_world.x, neighbor_world.y, neighbor_world.z) {
return false;
}
self.get_voxel_at_world_coords(neighbor_world).is_some()
}
/// Performs a raycast against the octree and returns the first intersected voxel.
pub fn raycast(&self, ray: &Ray) -> Option<(f32, f32, f32, u32, Vec3)> {
// Start from the root node
let half_size = self.size / 2.0;
let root_bounds = AABB {
min: Vec3::new(-half_size as f32, -half_size as f32, -half_size as f32),
max: Vec3::new(half_size as f32, half_size as f32, half_size as f32),
};
self.raycast_recursive(
&self.root,
ray,
&root_bounds,
0,
)
}
fn raycast_recursive(
&self,
node: &OctreeNode,
ray: &Ray,
bounds: &AABB,
depth: u32,
) -> Option<(f32, f32, f32, u32, Vec3)> {
// Check if the ray intersects this node's bounding box
if let Some((t_enter, _, normal)) = self.ray_intersects_aabb_with_normal(ray, bounds) {
// If this is a leaf node and contains a voxel, return it
if node.is_leaf && node.voxel.is_some() {
// Compute the exact hit position
let hit_position = ray.origin + ray.direction * t_enter;
// Return the hit position along with depth and normal
return Some((
hit_position.x as f32,
hit_position.y as f32,
hit_position.z as f32,
depth,
normal,
));
}
// If the node has children, traverse them
if let Some(ref children) = node.children {
// For each child, compute its bounding box and recurse
let mut hits = Vec::new();
for (i, child) in children.iter().enumerate() {
let child_bounds = self.compute_child_bounds(bounds, i);
if let Some(hit) = self.raycast_recursive(child, ray, &child_bounds, depth + 1) {
hits.push(hit);
}
}
// Return the closest hit, if any
if !hits.is_empty() {
hits.sort_by(|a, b| {
let dist_a = ((a.0 as f32 - ray.origin.x).powi(2)
+ (a.1 as f32 - ray.origin.y).powi(2)
+ (a.2 as f32 - ray.origin.z).powi(2))
.sqrt();
let dist_b = ((b.0 as f32 - ray.origin.x).powi(2)
+ (b.1 as f32 - ray.origin.y).powi(2)
+ (b.2 as f32 - ray.origin.z).powi(2))
.sqrt();
dist_a.partial_cmp(&dist_b).unwrap()
});
return Some(hits[0]);
}
}
}
None
}
}

View File

@ -0,0 +1,202 @@
use bevy::asset::RenderAssetUsages;
use bevy::prelude::*;
use bevy::render::mesh::*;
use bevy::render::render_resource::*;
use big_space::prelude::GridCell;
use crate::plugins::big_space::big_space_plugin::RootGrid;
use crate::plugins::environment::systems::voxels::structure::*;
#[derive(Component)]
pub struct VoxelTerrainMarker {}
pub fn render(
mut commands: Commands,
mut query: Query<&mut SparseVoxelOctree>,
render_object_query: Query<Entity, With<VoxelTerrainMarker>>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
root: Res<RootGrid>,
) {
for mut octree in query.iter_mut() {
// Only update when marked dirty
if !octree.dirty.is_empty() {
// Remove old render objects
for entity in render_object_query.iter() {
info!("Despawning {}", entity);
commands.entity(entity).despawn_recursive();
}
// Get the voxel centers (world positions), color, and depth.
let voxels = octree.traverse();
// Debug: Log the number of voxels traversed.
info!("Voxel count: {}", voxels.len());
let mut voxel_meshes = Vec::new();
for (world_position, _color, depth) in voxels {
// Get the size of the voxel at the current depth.
let voxel_size = octree.get_spacing_at_depth(depth);
// The traverse method already returns the voxel center in world space.
// For each neighbor direction, check if this voxel face is exposed.
for &(dx, dy, dz) in NEIGHBOR_OFFSETS.iter() {
// Pass the world-space voxel center directly.
if !octree.has_neighbor(world_position, dx as i32, dy as i32, dz as i32, depth) {
// Determine face normal and the local offset for the face.
let (normal, offset) = match (dx, dy, dz) {
(-1.0, 0.0, 0.0) => (
Vec3::new(-1.0, 0.0, 0.0),
Vec3::new(-voxel_size / 2.0, 0.0, 0.0),
),
(1.0, 0.0, 0.0) => (
Vec3::new(1.0, 0.0, 0.0),
Vec3::new(voxel_size / 2.0, 0.0, 0.0),
),
(0.0, -1.0, 0.0) => (
Vec3::new(0.0, -1.0, 0.0),
Vec3::new(0.0, -voxel_size / 2.0, 0.0),
),
(0.0, 1.0, 0.0) => (
Vec3::new(0.0, 1.0, 0.0),
Vec3::new(0.0, voxel_size / 2.0, 0.0),
),
(0.0, 0.0, -1.0) => (
Vec3::new(0.0, 0.0, -1.0),
Vec3::new(0.0, 0.0, -voxel_size / 2.0),
),
(0.0, 0.0, 1.0) => (
Vec3::new(0.0, 0.0, 1.0),
Vec3::new(0.0, 0.0, voxel_size / 2.0),
),
_ => continue,
};
voxel_meshes.push(generate_face(
world_position + offset, // offset the face
voxel_size / 2.0,
normal
));
}
}
}
// Merge all the face meshes into a single mesh.
let mesh = merge_meshes(voxel_meshes);
let cube_handle = meshes.add(mesh);
// Create a material with cull_mode disabled to see both sides (for debugging)
let material = materials.add(StandardMaterial {
base_color: Color::srgba(0.8, 0.7, 0.6, 1.0),
cull_mode: Some(Face::Back), // disable culling for debugging
..Default::default()
});
commands.entity(root.0).with_children(|parent| {
parent.spawn((
PbrBundle {
mesh: Mesh3d::from(cube_handle),
material: MeshMaterial3d::from(material),
transform: Transform::from_translation(Vec3::new(0.0, 0.0, 0.0)),
..Default::default()
},
GridCell::<i64>::ZERO,
VoxelTerrainMarker {},
));
});
// Reset the dirty flag after updating.
octree.dirty.clear();
}
}
}
fn generate_face(position: Vec3, face_size: f32, normal: Vec3) -> Mesh {
// Initialize an empty mesh with triangle topology
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::default());
// Define a quad centered at the origin
let mut positions = vec![
[-face_size, -face_size, 0.0],
[ face_size, -face_size, 0.0],
[ face_size, face_size, 0.0],
[-face_size, face_size, 0.0],
];
// Normalize the provided normal to ensure correct rotation
let normal = normal.normalize();
// Compute a rotation that aligns the default +Z with the provided normal
let rotation = Quat::from_rotation_arc(Vec3::Z, normal);
// Rotate and translate the vertices based on the computed rotation and provided position
for p in positions.iter_mut() {
let vertex = rotation * Vec3::from(*p) + position;
*p = [vertex.x, vertex.y, vertex.z];
}
let uvs = vec![
[0.0, 1.0],
[1.0, 1.0],
[1.0, 0.0],
[0.0, 0.0],
];
let indices = Indices::U32(vec![0, 1, 2, 2, 3, 0]);
// Use the provided normal for all vertices
let normals = vec![[normal.x, normal.y, normal.z]; 4];
mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, positions);
mesh.insert_attribute(Mesh::ATTRIBUTE_NORMAL, normals);
mesh.insert_attribute(Mesh::ATTRIBUTE_UV_0, uvs);
mesh.insert_indices(indices);
mesh
}
fn merge_meshes(meshes: Vec<Mesh>) -> Mesh {
let mut merged_positions = Vec::new();
let mut merged_uvs = Vec::new();
let mut merged_normals = Vec::new(); // To store merged normals
let mut merged_indices = Vec::new();
for mesh in meshes {
if let Some(VertexAttributeValues::Float32x3(positions)) = mesh.attribute(Mesh::ATTRIBUTE_POSITION) {
let start_index = merged_positions.len();
merged_positions.extend_from_slice(positions);
// Extract UVs
if let Some(VertexAttributeValues::Float32x2(uvs)) = mesh.attribute(Mesh::ATTRIBUTE_UV_0) {
merged_uvs.extend_from_slice(uvs);
}
// Extract normals
if let Some(VertexAttributeValues::Float32x3(normals)) = mesh.attribute(Mesh::ATTRIBUTE_NORMAL) {
merged_normals.extend_from_slice(normals);
}
// Extract indices and apply offset
if let Some(indices) = mesh.indices() {
if let Indices::U32(indices) = indices {
let offset_indices: Vec<u32> = indices.iter().map(|i| i + start_index as u32).collect();
merged_indices.extend(offset_indices);
}
}
}
}
// Create new merged mesh
let mut merged_mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::default());
// Insert attributes into the merged mesh
merged_mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, merged_positions);
merged_mesh.insert_attribute(Mesh::ATTRIBUTE_UV_0, merged_uvs);
merged_mesh.insert_attribute(Mesh::ATTRIBUTE_NORMAL, merged_normals); // Insert merged normals
merged_mesh.insert_indices(Indices::U32(merged_indices));
merged_mesh
}

View File

@ -0,0 +1,85 @@
use std::collections::{HashMap, HashSet, VecDeque};
use bevy::color::Color;
use bevy::prelude::*;
/// Represents a single voxel with a color.
#[derive(Debug, Clone, Copy, Component, PartialEq, Default)]
pub struct Voxel {
pub color: Color,
}
#[derive(Debug, Clone, Copy)]
pub struct DirtyVoxel {
pub position: Vec3,
}
/// Represents a node in the sparse voxel octree.
#[derive(Debug, Component, Clone)]
pub struct OctreeNode {
pub children: Option<Box<[OctreeNode; 8]>>,
pub voxel: Option<Voxel>,
pub is_leaf: bool,
}
/// Represents the root of the sparse voxel octree.
/// Represents the root of the sparse voxel octree.
#[derive(Debug, Component)]
pub struct SparseVoxelOctree {
pub root: OctreeNode,
pub max_depth: u32,
pub size: f32,
pub show_wireframe: bool,
pub show_world_grid: bool,
pub show_chunks: bool,
pub dirty: Vec<DirtyVoxel>,
}
impl OctreeNode {
/// Creates a new empty octree node.
pub fn new() -> Self {
Self {
children: None,
voxel: None,
is_leaf: true,
}
}
pub fn is_empty(&self) -> bool {
self.voxel.is_none() && self.children.is_none()
}
}
impl Voxel {
/// Creates a new empty octree node.
pub fn new(color: Color) -> Self {
Self {
color,
}
}
}
pub const NEIGHBOR_OFFSETS: [(f32, f32, f32); 6] = [
(-1.0, 0.0, 0.0), // Left
(1.0, 0.0, 0.0), // Right
(0.0, -1.0, 0.0), // Down
(0.0, 1.0, 0.0), // Up
(0.0, 0.0, -1.0), // Back
(0.0, 0.0, 1.0), // Front
];
#[derive(Debug)]
pub struct Ray {
pub origin: Vec3,
pub direction: Vec3,
}
#[derive(Clone)]
pub struct AABB {
pub min: Vec3,
pub max: Vec3,
}

View File

@ -3,8 +3,8 @@ rem combine_all.bat merge every *.rs and *.toml in this tree
setlocal enabledelayedexpansion
rem Output files
set "OUT_RS=target/combined.rs"
set "OUT_TOML=target/combined.toml"
set "OUT_RS=target/combined.rs.out"
set "OUT_TOML=target/combined.toml.out"
if exist "%OUT_RS%" del "%OUT_RS%"
if exist "%OUT_TOML%" del "%OUT_TOML%"