2023-09-30 15:08:09 +02:00

266 lines
8.2 KiB
JavaScript

import { midiToFreq, noteToMidi } from './util.mjs';
import { registerSound, getAudioContext } from './superdough.mjs';
import { gainNode, getEnvelope, getExpEnvelope } from './helpers.mjs';
const mod = (freq, range = 1, type = 'sine') => {
const ctx = getAudioContext();
const osc = ctx.createOscillator();
osc.type = type;
osc.frequency.value = freq;
osc.start();
const g = new GainNode(ctx, { gain: range });
osc.connect(g); // -range, range
return { node: g, stop: (t) => osc.stop(t) };
};
const fm = (osc, harmonicityRatio, modulationIndex, wave = 'sine') => {
const carrfreq = osc.frequency.value;
const modfreq = carrfreq * harmonicityRatio;
const modgain = modfreq * modulationIndex;
return mod(modfreq, modgain, wave);
};
export function registerSynthSounds() {
['sine', 'square', 'triangle',
'sawtooth', 'pink', 'white',
'brown'].forEach((wave) => {
registerSound(
wave,
(t, value, onended) => {
// destructure adsr here, because the default should be different for synths and samples
let {
attack = 0.001,
decay = 0.05,
sustain = 0.6,
release = 0.01,
fmh: fmHarmonicity = 1,
fmi: fmModulationIndex,
fmenv: fmEnvelopeType = 'lin',
fmattack: fmAttack,
fmdecay: fmDecay,
fmsustain: fmSustain,
fmrelease: fmRelease,
fmvelocity: fmVelocity,
fmwave: fmWaveform = 'sine',
vib = 0,
vibmod = 0.5,
noise = 0,
} = value;
let { n, note, freq } = value;
// with synths, n and note are the same thing
note = note || 36;
if (typeof note === 'string') {
note = noteToMidi(note); // e.g. c3 => 48
}
// get frequency
if (!freq && typeof note === 'number') {
freq = midiToFreq(note); // + 48);
}
// maybe pull out the above frequency resolution?? (there is also getFrequency but it has no default)
// make oscillator
const { node: o, stop, dry_node = null } = getOscillator({
t,
s: wave,
freq,
vib,
vibmod,
partials: n,
noise: noise,
});
// FM + FM envelope
let stopFm, fmEnvelope;
if (fmModulationIndex) {
const { node: modulator, stop } = fm(dry_node !== null ? dry_node : o, fmHarmonicity, fmModulationIndex, fmWaveform);
if (![fmAttack, fmDecay, fmSustain, fmRelease, fmVelocity].find((v) => v !== undefined)) {
// no envelope by default
modulator.connect(dry_node !== null ? dry_node.frequency : o.frequency);
} else {
fmAttack = fmAttack ?? 0.001;
fmDecay = fmDecay ?? 0.001;
fmSustain = fmSustain ?? 1;
fmRelease = fmRelease ?? 0.001;
fmVelocity = fmVelocity ?? 1;
fmEnvelope = getEnvelope(fmAttack, fmDecay, fmSustain, fmRelease, fmVelocity, t);
if (fmEnvelopeType === 'exp') {
fmEnvelope = getExpEnvelope(fmAttack, fmDecay, fmSustain, fmRelease, fmVelocity, t);
fmEnvelope.node.maxValue = fmModulationIndex * 2;
fmEnvelope.node.minValue = 0.00001;
}
modulator.connect(fmEnvelope.node);
fmEnvelope.node.connect(dry_node !== null ? dry_node.frequency : o.frequency);
}
stopFm = stop;
}
// turn down
const g = gainNode(0.3);
// gain envelope
const { node: envelope, stop: releaseEnvelope } = getEnvelope(attack, decay, sustain, release, 1, t);
o.onended = () => {
o.disconnect();
g.disconnect();
onended();
};
return {
node: o.connect(g).connect(envelope),
stop: (releaseTime) => {
releaseEnvelope(releaseTime);
fmEnvelope?.stop(releaseTime);
let end = releaseTime + release;
stop(end);
stopFm?.(end);
},
};
},
{ type: 'synth', prebake: true },
);
});
}
export function waveformN(partials, type) {
const real = new Float32Array(partials + 1);
const imag = new Float32Array(partials + 1);
const ac = getAudioContext();
const osc = ac.createOscillator();
const amplitudes = {
sawtooth: (n) => 1 / n,
square: (n) => (n % 2 === 0 ? 0 : 1 / n),
triangle: (n) => (n % 2 === 0 ? 0 : 1 / (n * n)),
};
if (!amplitudes[type]) {
throw new Error(`unknown wave type ${type}`);
}
real[0] = 0; // dc offset
imag[0] = 0;
let n = 1;
while (n <= partials) {
real[n] = amplitudes[type](n);
imag[n] = 0;
n++;
}
const wave = ac.createPeriodicWave(real, imag);
osc.setPeriodicWave(wave);
return osc;
}
export function getNoiseOscillator({ t, ac, type = 'white' }) {
const bufferSize = 2 * ac.sampleRate;
const noiseBuffer = ac.createBuffer(1, bufferSize, ac.sampleRate);
const output = noiseBuffer.getChannelData(0);
let lastOut = 0;
let b0, b1, b2, b3, b4, b5, b6;
b0 = b1 = b2 = b3 = b4 = b5 = b6 = 0.0;
for (let i = 0; i < bufferSize; i++) {
if (type === 'white') {
output[i] = Math.random() * 2 - 1;
} else if (type === 'brown') {
let white = Math.random() * 2 - 1;
output[i] = (lastOut + (0.02 * white)) / 1.02;
lastOut = output[i];
} else if (type === 'pink') {
let white = Math.random() * 2 - 1;
b0 = 0.99886 * b0 + white * 0.0555179;
b1 = 0.99332 * b1 + white * 0.0750759;
b2 = 0.96900 * b2 + white * 0.1538520;
b3 = 0.86650 * b3 + white * 0.3104856;
b4 = 0.55000 * b4 + white * 0.5329522;
b5 = -0.7616 * b5 - white * 0.0168980;
output[i] = b0 + b1 + b2 + b3 + b4 + b5 + b6 + white * 0.5362;
output[i] *= 0.11;
b6 = white * 0.115926;
}
}
const o = ac.createBufferSource();
o.buffer = noiseBuffer;
o.loop = true;
o.start(t);
return {
node: o,
stop: (time) => o.stop(time)
};
}
export function getOscillator({ s, freq, t, vib, vibmod, partials, noise }) {
// Make oscillator with partial count
let ac = getAudioContext();
let o;
if (['pink', 'white', 'brown'].includes(s)) {
let noiseOscillator = getNoiseOscillator({ t: t, ac: getAudioContext(), type: s })
return {
node: noiseOscillator.node,
stop: noiseOscillator.stop
}
} else {
if (!partials || s === 'sine') {
o = getAudioContext().createOscillator();
o.type = s || 'triangle';
} else {
o = waveformN(partials, s);
}
o.frequency.value = Number(freq);
o.start(t);
// Additional oscillator for vibrato effect
let vibrato_oscillator;
if (vib > 0) {
vibrato_oscillator = getAudioContext().createOscillator();
vibrato_oscillator.frequency.value = vib;
const gain = getAudioContext().createGain();
// Vibmod is the amount of vibrato, in semitones
gain.gain.value = vibmod * 100;
vibrato_oscillator.connect(gain);
gain.connect(o.detune);
vibrato_oscillator.start(t);
}
if (noise > 0) {
// Two gain nodes to set the oscillators to their respective levels
noise = noise > 1 ? 1 : noise;
let o_gain = ac.createGain();
let n_gain = ac.createGain();
o_gain.gain.setValueAtTime(1 - noise, ac.currentTime);
n_gain.gain.setValueAtTime(noise, ac.currentTime);
// Instanciating a mixer to blend sources together
let mix_gain = ac.createGain();
// Connecting the main oscillator to the gain node
o.connect(o_gain).connect(mix_gain);
// Instanciating a noise oscillator and connecting
const noiseOscillator = getNoiseOscillator({ t: t, ac: ac, type: 'pink' });
noiseOscillator.node.connect(n_gain).connect(mix_gain);
return {
node: mix_gain,
dry_node: o,
stop: (time) => {
vibrato_oscillator?.stop(time);
o.stop(time);
noiseOscillator.stop(time);
}
}
}
return {
node: o,
stop: (time) => {
vibrato_oscillator?.stop(time);
o.stop(time);
},
};
}
}