strudel/packages/superdough/worklets.mjs
Jade (Rose) Rowland 12cb5b0939 remove imports
2024-05-26 11:31:18 -04:00

467 lines
12 KiB
JavaScript

// coarse, crush, and shape processors adapted from dktr0's webdirt: https://github.com/dktr0/WebDirt/blob/5ce3d698362c54d6e1b68acc47eb2955ac62c793/dist/AudioWorklets.js
// LICENSE GNU General Public License v3.0 see https://github.com/dktr0/WebDirt/blob/main/LICENSE
// TOFIX: THIS FILE DOES NOT SUPPORT IMPORTS ON DEPOLYMENT
const clamp = (num, min, max) => Math.min(Math.max(num, min), max);
const _mod = (n, m) => ((n % m) + m) % m;
const blockSize = 128;
// adjust waveshape to remove frequencies above nyquist to prevent aliasing
// referenced from https://www.kvraudio.com/forum/viewtopic.php?t=375517
function polyBlep(phase, dt) {
// 0 <= phase < 1
if (phase < dt) {
phase /= dt;
// 2 * (phase - phase^2/2 - 0.5)
return phase + phase - phase * phase - 1;
}
// -1 < phase < 0
else if (phase > 1 - dt) {
phase = (phase - 1) / dt;
// 2 * (phase^2/2 + phase + 0.5)
return phase * phase + phase + phase + 1;
}
// 0 otherwise
else {
return 0;
}
}
const waveshapes = {
tri(phase, skew = 0.5) {
const x = 1 - skew;
if (phase >= skew) {
return 1 / x - phase / x;
}
return phase / skew;
},
sine(phase) {
return Math.sin(Math.PI * 2 * phase) * 0.5 + 0.5;
},
ramp(phase) {
return phase;
},
saw(phase) {
return 1 - phase;
},
square(phase, skew = 0.5) {
if (phase >= skew) {
return 0;
}
return 1;
},
custom(phase, values = [0, 1]) {
const numParts = values.length - 1;
const currPart = Math.floor(phase * numParts);
const partLength = 1 / numParts;
const startVal = clamp(values[currPart], 0, 1);
const endVal = clamp(values[currPart + 1], 0, 1);
const y2 = endVal;
const y1 = startVal;
const x1 = 0;
const x2 = partLength;
const slope = (y2 - y1) / (x2 - x1);
return slope * (phase - partLength * currPart) + startVal;
},
sawblep(phase, dt) {
const v = 2 * phase - 1;
return v - polyBlep(phase, dt);
},
};
const waveShapeNames = Object.keys(waveshapes);
class LFOProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [
{ name: 'time', defaultValue: 0 },
{ name: 'end', defaultValue: 0 },
{ name: 'frequency', defaultValue: 0.5 },
{ name: 'skew', defaultValue: 0.5 },
{ name: 'depth', defaultValue: 1 },
{ name: 'phaseoffset', defaultValue: 0 },
{ name: 'shape', defaultValue: 0 },
{ name: 'dcoffset', defaultValue: 0 },
];
}
constructor() {
super();
this.phase;
}
incrementPhase(dt) {
this.phase += dt;
if (this.phase > 1.0) {
this.phase = this.phase - 1;
}
}
process(inputs, outputs, parameters) {
// eslint-disable-next-line no-undef
if (currentTime >= parameters.end[0]) {
return false;
}
const output = outputs[0];
const frequency = parameters['frequency'][0];
const time = parameters['time'][0];
const depth = parameters['depth'][0];
const skew = parameters['skew'][0];
const phaseoffset = parameters['phaseoffset'][0];
const dcoffset = parameters['dcoffset'][0];
const shape = waveShapeNames[parameters['shape'][0]];
const blockSize = output[0].length ?? 0;
if (this.phase == null) {
this.phase = _mod(time * frequency + phaseoffset, 1);
}
// eslint-disable-next-line no-undef
const dt = frequency / sampleRate;
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < output.length; i++) {
const modval = (waveshapes[shape](this.phase, skew) + dcoffset) * depth;
output[i][n] = modval;
}
this.incrementPhase(dt);
}
return true;
}
}
registerProcessor('lfo-processor', LFOProcessor);
class CoarseProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [{ name: 'coarse', defaultValue: 1 }];
}
constructor() {
super();
this.started = false;
}
process(inputs, outputs, parameters) {
const input = inputs[0];
const output = outputs[0];
const hasInput = !(input[0] === undefined);
if (this.started && !hasInput) {
return false;
}
this.started = hasInput;
let coarse = parameters.coarse[0] ?? 0;
coarse = Math.max(1, coarse);
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < input.length; i++) {
output[i][n] = n % coarse === 0 ? input[i][n] : output[i][n - 1];
}
}
return true;
}
}
registerProcessor('coarse-processor', CoarseProcessor);
class CrushProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [{ name: 'crush', defaultValue: 0 }];
}
constructor() {
super();
this.started = false;
}
process(inputs, outputs, parameters) {
const input = inputs[0];
const output = outputs[0];
const hasInput = !(input[0] === undefined);
if (this.started && !hasInput) {
return false;
}
this.started = hasInput;
let crush = parameters.crush[0] ?? 8;
crush = Math.max(1, crush);
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < input.length; i++) {
const x = Math.pow(2, crush - 1);
output[i][n] = Math.round(input[i][n] * x) / x;
}
}
return true;
}
}
registerProcessor('crush-processor', CrushProcessor);
class ShapeProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [
{ name: 'shape', defaultValue: 0 },
{ name: 'postgain', defaultValue: 1 },
];
}
constructor() {
super();
this.started = false;
}
process(inputs, outputs, parameters) {
const input = inputs[0];
const output = outputs[0];
const hasInput = !(input[0] === undefined);
if (this.started && !hasInput) {
return false;
}
this.started = hasInput;
let shape = parameters.shape[0];
shape = shape < 1 ? shape : 1.0 - 4e-10;
shape = (2.0 * shape) / (1.0 - shape);
const postgain = Math.max(0.001, Math.min(1, parameters.postgain[0]));
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < input.length; i++) {
output[i][n] = (((1 + shape) * input[i][n]) / (1 + shape * Math.abs(input[i][n]))) * postgain;
}
}
return true;
}
}
registerProcessor('shape-processor', ShapeProcessor);
function fast_tanh(x) {
const x2 = x * x;
return (x * (27.0 + x2)) / (27.0 + 9.0 * x2);
}
const _PI = 3.14159265359;
//adapted from https://github.com/TheBouteillacBear/webaudioworklet-wasm?tab=MIT-1-ov-file
class LadderProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [
{ name: 'frequency', defaultValue: 500 },
{ name: 'q', defaultValue: 1 },
{ name: 'drive', defaultValue: 0.69 },
];
}
constructor() {
super();
this.started = false;
this.p0 = [0, 0];
this.p1 = [0, 0];
this.p2 = [0, 0];
this.p3 = [0, 0];
this.p32 = [0, 0];
this.p33 = [0, 0];
this.p34 = [0, 0];
}
process(inputs, outputs, parameters) {
const input = inputs[0];
const output = outputs[0];
const hasInput = !(input[0] === undefined);
if (this.started && !hasInput) {
return false;
}
this.started = hasInput;
const resonance = parameters.q[0];
const drive = clamp(Math.exp(parameters.drive[0]), 0.1, 2000);
let cutoff = parameters.frequency[0];
// eslint-disable-next-line no-undef
cutoff = (cutoff * 2 * _PI) / sampleRate;
cutoff = cutoff > 1 ? 1 : cutoff;
const k = Math.min(8, resonance * 0.4);
// drive makeup * resonance volume loss makeup
let makeupgain = (1 / drive) * Math.min(1.75, 1 + k);
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < input.length; i++) {
const out = this.p3[i] * 0.360891 + this.p32[i] * 0.41729 + this.p33[i] * 0.177896 + this.p34[i] * 0.0439725;
this.p34[i] = this.p33[i];
this.p33[i] = this.p32[i];
this.p32[i] = this.p3[i];
this.p0[i] += (fast_tanh(input[i][n] * drive - k * out) - fast_tanh(this.p0[i])) * cutoff;
this.p1[i] += (fast_tanh(this.p0[i]) - fast_tanh(this.p1[i])) * cutoff;
this.p2[i] += (fast_tanh(this.p1[i]) - fast_tanh(this.p2[i])) * cutoff;
this.p3[i] += (fast_tanh(this.p2[i]) - fast_tanh(this.p3[i])) * cutoff;
output[i][n] = out * makeupgain;
}
}
return true;
}
}
registerProcessor('ladder-processor', LadderProcessor);
class DistortProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [
{ name: 'distort', defaultValue: 0 },
{ name: 'postgain', defaultValue: 1 },
];
}
constructor() {
super();
this.started = false;
}
process(inputs, outputs, parameters) {
const input = inputs[0];
const output = outputs[0];
const hasInput = !(input[0] === undefined);
if (this.started && !hasInput) {
return false;
}
this.started = hasInput;
const shape = Math.expm1(parameters.distort[0]);
const postgain = Math.max(0.001, Math.min(1, parameters.postgain[0]));
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < input.length; i++) {
output[i][n] = (((1 + shape) * input[i][n]) / (1 + shape * Math.abs(input[i][n]))) * postgain;
}
}
return true;
}
}
registerProcessor('distort-processor', DistortProcessor);
// SUPERSAW
function lerp(a, b, n) {
return n * (b - a) + a;
}
function getUnisonDetune(unison, detune, voiceIndex) {
if (unison < 2) {
return 0;
}
return lerp(-detune * 0.5, detune * 0.5, voiceIndex / (unison - 1));
}
class SuperSawOscillatorProcessor extends AudioWorkletProcessor {
constructor() {
super();
this.phase = [];
}
static get parameterDescriptors() {
return [
{
name: 'begin',
defaultValue: 0,
max: Number.POSITIVE_INFINITY,
min: 0,
},
{
name: 'end',
defaultValue: 0,
max: Number.POSITIVE_INFINITY,
min: 0,
},
{
name: 'frequency',
defaultValue: 440,
min: Number.EPSILON,
},
{
name: 'panspread',
defaultValue: 0.4,
min: 0,
max: 1,
},
{
name: 'freqspread',
defaultValue: 0.2,
min: 0,
},
{
name: 'detune',
defaultValue: 0,
min: 0,
},
{
name: 'voices',
defaultValue: 5,
min: 1,
},
];
}
process(input, outputs, params) {
// eslint-disable-next-line no-undef
if (currentTime <= params.begin[0]) {
return true;
}
// eslint-disable-next-line no-undef
if (currentTime >= params.end[0]) {
// this.port.postMessage({ type: 'onended' });
return false;
}
let frequency = params.frequency[0];
//apply detune in cents
frequency = frequency * Math.pow(2, params.detune[0] / 1200);
const output = outputs[0];
const voices = params.voices[0];
const freqspread = params.freqspread[0];
const panspread = params.panspread[0] * 0.5 + 0.5;
const gain1 = Math.sqrt(1 - panspread);
const gain2 = Math.sqrt(panspread);
for (let n = 0; n < voices; n++) {
const isOdd = (n & 1) == 1;
//applies unison "spread" detune in semitones
const freq = frequency * Math.pow(2, getUnisonDetune(voices, freqspread, n) / 12);
let gainL = gain1;
let gainR = gain2;
// invert right and left gain
if (isOdd) {
gainL = gain2;
gainR = gain1;
}
// eslint-disable-next-line no-undef
const dt = freq / sampleRate;
for (let i = 0; i < output[0].length; i++) {
this.phase[n] = this.phase[n] ?? Math.random();
const v = waveshapes.sawblep(this.phase[n], dt);
output[0][i] = output[0][i] + v * gainL;
output[1][i] = output[1][i] + v * gainR;
this.phase[n] += dt;
if (this.phase[n] > 1.0) {
this.phase[n] = this.phase[n] - 1;
}
}
}
return true;
}
}
registerProcessor('supersaw-oscillator', SuperSawOscillatorProcessor);