// coarse, crush, and shape processors adapted from dktr0's webdirt: https://github.com/dktr0/WebDirt/blob/5ce3d698362c54d6e1b68acc47eb2955ac62c793/dist/AudioWorklets.js // LICENSE GNU General Public License v3.0 see https://github.com/dktr0/WebDirt/blob/main/LICENSE class CoarseProcessor extends AudioWorkletProcessor { static get parameterDescriptors() { return [{ name: 'coarse', defaultValue: 1 }]; } constructor() { super(); } process(inputs, outputs, parameters) { const input = inputs[0]; const output = outputs[0]; const blockSize = 128; let coarse = parameters.coarse[0] ?? 0; coarse = Math.max(1, coarse); if (input[0] == null || output[0] == null) { return false; } for (let n = 0; n < blockSize; n++) { for (let i = 0; i < input.length; i++) { output[i][n] = n % coarse === 0 ? input[i][n] : output[i][n - 1]; } } return true; } } registerProcessor('coarse-processor', CoarseProcessor); class CrushProcessor extends AudioWorkletProcessor { static get parameterDescriptors() { return [{ name: 'crush', defaultValue: 0 }]; } constructor() { super(); } process(inputs, outputs, parameters) { const input = inputs[0]; const output = outputs[0]; const blockSize = 128; let crush = parameters.crush[0] ?? 8; crush = Math.max(1, crush); if (input[0] == null || output[0] == null) { return false; } for (let n = 0; n < blockSize; n++) { for (let i = 0; i < input.length; i++) { const x = Math.pow(2, crush - 1); output[i][n] = Math.round(input[i][n] * x) / x; } } return true; } } registerProcessor('crush-processor', CrushProcessor); class ShapeProcessor extends AudioWorkletProcessor { static get parameterDescriptors() { return [ { name: 'shape', defaultValue: 0 }, { name: 'postgain', defaultValue: 1 }, ]; } constructor() { super(); } process(inputs, outputs, parameters) { const input = inputs[0]; const output = outputs[0]; const blockSize = 128; let shape = parameters.shape[0]; shape = shape < 1 ? shape : 1.0 - 4e-10; shape = (2.0 * shape) / (1.0 - shape); const postgain = Math.max(0.001, Math.min(1, parameters.postgain[0])); if (input[0] == null || output[0] == null) { return false; } for (let n = 0; n < blockSize; n++) { for (let i = 0; i < input.length; i++) { output[i][n] = (((1 + shape) * input[i][n]) / (1 + shape * Math.abs(input[i][n]))) * postgain; } } return true; } } registerProcessor('shape-processor', ShapeProcessor); class DistortProcessor extends AudioWorkletProcessor { static get parameterDescriptors() { return [ { name: 'distort', defaultValue: 0 }, { name: 'postgain', defaultValue: 1 }, ]; } constructor() { super(); } process(inputs, outputs, parameters) { const input = inputs[0]; const output = outputs[0]; const blockSize = 128; const shape = Math.expm1(parameters.distort[0]); const postgain = Math.max(0.001, Math.min(1, parameters.postgain[0])); if (input[0] == null || output[0] == null) { return false; } for (let n = 0; n < blockSize; n++) { for (let i = 0; i < input.length; i++) { output[i][n] = (((1 + shape) * input[i][n]) / (1 + shape * Math.abs(input[i][n]))) * postgain; } } return true; } } registerProcessor('distort-processor', DistortProcessor); // adjust waveshape to remove frequencies above nyquist to prevent aliasing // referenced from https://www.kvraudio.com/forum/viewtopic.php?t=375517 const polyBlep = (phase, dt) => { // 0 <= phase < 1 if (phase < dt) { phase /= dt; // 2 * (phase - phase^2/2 - 0.5) return phase + phase - phase * phase - 1; } // -1 < phase < 0 else if (phase > 1 - dt) { phase = (phase - 1) / dt; // 2 * (phase^2/2 + phase + 0.5) return phase * phase + phase + phase + 1; } // 0 otherwise else { return 0; } }; const saw = (phase, dt) => { const v = 2 * phase - 1; return v - polyBlep(phase, dt); }; function lerp(a, b, n) { return n * (b - a) + a; } function getUnisonDetune(unison, detune, voiceIndex) { if (unison < 2) { return 0; } return lerp(-detune * 0.5, detune * 0.5, voiceIndex / (unison - 1)); } class SuperSawOscillatorProcessor extends AudioWorkletProcessor { constructor() { super(); this.phase = []; } static get parameterDescriptors() { return [ { name: 'begin', defaultValue: 0, max: Number.POSITIVE_INFINITY, min: 0, }, { name: 'end', defaultValue: 0, max: Number.POSITIVE_INFINITY, min: 0, }, { name: 'frequency', defaultValue: 440, min: Number.EPSILON, }, { name: 'panspread', defaultValue: 0.4, min: 0, max: 1, }, { name: 'freqspread', defaultValue: 0.2, min: 0, }, { name: 'detune', defaultValue: 0, min: 0, }, { name: 'voices', defaultValue: 5, min: 1, }, ]; } process(input, outputs, params) { // eslint-disable-next-line no-undef if (currentTime <= params.begin[0]) { return true; } // eslint-disable-next-line no-undef if (currentTime >= params.end[0]) { // this.port.postMessage({ type: 'onended' }); return false; } let frequency = params.frequency[0]; //apply detune in cents frequency = frequency * Math.pow(2, params.detune[0] / 1200); const output = outputs[0]; const voices = params.voices[0]; const freqspread = params.freqspread[0]; const panspread = params.panspread[0] * 0.5 + 0.5; const gain1 = Math.sqrt(1 - panspread); const gain2 = Math.sqrt(panspread); for (let n = 0; n < voices; n++) { const isOdd = (n & 1) == 1; //applies unison "spread" detune in semitones const freq = frequency * Math.pow(2, getUnisonDetune(voices, freqspread, n) / 12); let gainL = gain1; let gainR = gain2; // invert right and left gain if (isOdd) { gainL = gain2; gainR = gain1; } // eslint-disable-next-line no-undef const dt = freq / sampleRate; for (let i = 0; i < output[0].length; i++) { this.phase[n] = this.phase[n] ?? Math.random(); const v = saw(this.phase[n], dt); output[0][i] = output[0][i] + v * gainL; output[1][i] = output[1][i] + v * gainR; this.phase[n] += dt; if (this.phase[n] > 1.0) { this.phase[n] = this.phase[n] - 1; } } } return true; } } registerProcessor('supersaw-oscillator', SuperSawOscillatorProcessor);