Strudel

Felix Roos
Affiliation?
x@x.com

ABSTRACT

Abstract goes here (find me in the latex template)

1. INTRODUCTION

This paper introduces Strudel, an alternative implemen-
tation of the TidalCycles live coding system, using the
JavaScript programming language.

2. BACKGROUND

TidalCycles (or Tidal for short) has been developed since
around 2009, as a system for live coding algorithmic pat-
terns, particularly in music (McLean 2014). Tidal is embed-
ded in the pure functional Haskell programming language,
taking advantage of its terse syntax and advanced type sys-
tem. Over the past decade, Tidal has undergone a number of
re-writes, developing a functional reactive representation of
pattern, where patterns may be combined and transformed
in a wide variety of ways (Alternate Timelines for Tidal-
Cycles 2021). Over this time is has gained diverse ideas
from other patterned forms, including from computer music
(Spiegel n.d.), Indian classical music (Rationalizing Musical
Time: Syntactic and Symbolic-Numeric Approaches® n.d.),
textiles (McLean and Harlizius-Kliick 2018), improvised per-
cussion (Scopus Preview - Scopus - Welcome to Scopus n.d.),
and Ancient Greek lyric (Mc Lean, Fanfani, and Harlizius-
Kliick 2018).

Most recently, attention has turned to transferring Tidals
ideas to other, less pure languages; firstly, to the Python
programming language as TidalVortex (TidalVortex Zero
2022) (Vortex for short), and now to JavaScript as Strudel-
Cycles (Strudel for short), the topic of the present paper.
For general background on the motivations for porting Tidal
to a multi-paradigm programming language, please see the
TidalVortex paper (TidalVortex Zero 2022). The motiva-
tions for porting it to JavaScript are similar, with a particu-
lar slanting on accessibility - of course, a web browser based
application does not require any installation. As with Vortex
though, it is important to point out that this is a creative,
free/open source project, and as such, an primary motiva-
tion will always be developers curiosity, and market-driven

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2022, December 6-8, 2022, Cannes, France.

© 2022 Copyright held by the owner/author(s).

Alex McLean

Then Try This
Sheffield/Penryn

alex@slab.org

perspectives on development choices may even be demotiva-
tional.

General motivations / related work. Reference vortex pa-
per and summarise its background.

The reimplementation of TidalCycles in Python (cite
TidalVortex) showed that it is possible to translate pure
functional reactive programming ideas to a multi paradigm
language. It proved to be a stepping stone to move to other
multi-paradigm languages, like JavaScript. A significant
part of of the Python codebase could be quickly ported to
JavaScript by syntactical adjustments.

3. INTRODUCING STRUDEL

e Motivating musical example

4. TIDAL PATTERNS

(should we explain shortly what tidal patterns do in gen-
eral here?)

The essence of TidalCycles are Patterns. Patterns are ab-
stract entities that represent flows of time, supporting both
continuous changes (like signals) and discrete events (like
notes). Taking a time span as its input, a Pattern can out-
put a set of events that happen within that time span. It
depends on the structure of the Pattern where the events
are placed. From now on, this process of generating events
from a time span will be called querying. Example:

const pattern = sequence(c3, [e3, g3]);
const events = pattern.query(0, 1);
console.log(events.map(e => e.show()))

In this example, we create a pattern using the sequence
function and query it for the timespan from 0 to 1. Those
numbers represent units of time called cycles. The length of
one cycle defaults to one second, but could be any number
of seconds. The console output looks like this:

O ->1/2 ¢3)
(1/2 -> 3/4 e3)
(3/2 > 1 g3)

In this output, each line represents one event. The two
fractions represent the begin and end time of the event, fol-
lowed by its value. In this case, the events are placed in
sequential order, where c3 takes the first half, and e3 and
g3 together take the second half. This temporal placement
is the result of the sequence function, which divides its ar-
guments equally over one cycle. If an argument is an array,

the same rule applies to that part of the sequence. In our
example e3 and g3 are divided equally over the second half
of the whole sequence.

5. MINI NOTATION

In this example, the Pattern is created using the mini
function, which parses Tidals Mini Notation. The Mini No-
tation is a Domain Specific Language (DSL) that allows ex-
pressing rhythms in a short mannger.

e Some comparisons of -Strudel with -Vortex and -Cycles
code?

(the following examples are from vortex paper, with added
js versions)

51 1

sound "bd ~ [sd cpl"
sound("bd", silence, ["sd", "cp"l)
sound("bd ~ [sd cp]l")

without mini notation:

sound $ cat
[pure "bd", silence,
cat(pure "sd", pure "cp")]

sound('bd', silence, cat('sd', 'cp'))
52 2

sound "bd ~ <sd cp>"

sound("bd", silence, slowcat("sd", "cp"))

sound("bd ~ <sd cp>")
// sound('bd', silence, slowcat('sd', 'cp'))

53 3

sound "bd {cp sd, 1t mt ht}"

sound("bd", pm(["cp", "Sd"], ["lt", "mt", "ht"]))
?

54 4

sound "bd {cp sd, [1t mt,bd bd bd] ht}"

sound("bd", pm(["cp", "Sd"] s
[pr(["lt", nmtu] s
["bd", "bd", "bd"]

))

"ht”]))
77
55 5

sound "bd sd cp" # speed "1 2"
sound("bd", "sd", "cp") >> speed (1, 2)
sound("bd sd cp").speed("1 2")

(operator overloading like in vortex?)

5.6 6

rev $ sound "bd sd"

rev(sound("bd", "sd"))
sound("bd", "sd").rev()

rev(sound("bd sd"))
sound("bd sd") .rev()

5.7 7

jux rev $ every 3 (fast 2) $ sound "bd sd"

jux(rev, every(3, fast(2), sound("bd", "sd")))
sound("bd","sd") .every(3, fast(2)).jux(rev)

jux(rev, every(3, fast(2), sound("bd sd")))
sound("bd sd").every(3, fast(2)).jux(rev)

(partial application)

58 8

n ("1 2 3" + "4 5") # sound "drum"
n (sequence(1,2,3) + sequence(4,5)) >> sound "drum"

n("1 2 3".add("4 5")).sound("drum")
n("5 [6 7] 8").sound("drum")

(operator overloading?)

59 9

speed("1 2 3" + sine)
speed(sequence(1,2,3) + sine)

speed("1 2 3".add(sine))
"c3%4" . add(sine.mul(12).slow(8)) .pianoroll()

510 10

e Mininotation

6. STRUDEL/WEB SPECIFICS

Some discussion about whether strudel is really a port
of TidalCycles, or whether javascript affordances mean its
going its own way..

e Recursive Scheduling: calling itself in the future
e Optimizing Syntax for minimal keystrokes / readabil-
ity: AST Hacking via shift-ast pseudo variables

— Handling mininotation - double quoted and tem-
plate strings to mini calls
— Operator overloading

e Fixing inconsistencies (e.g. with stut/echo) adding
source locations

e Dynamic HUD: Highlighting + drawing

e Translation of Tidal concepts to Javascript - different
constraints, affordances, aesthetics

e Dynamic Harmonic Programming?

e emulating musician thought patterns

e microtonal features? webserial

6.1 User Code Transpilation

(compare user input vs shifted output)

6.1.1 double quotes -> mini calls

"c3 e3" // or “c3 e3”
mini("c3 e3")

6.1.2 operator overloading
cat(c3, e3) * 4
reify(cat("c3","e3")) .fast(4)

(reify is redundant here, the shapeshifter could have an
additional check)
(TBD: ability to multiply mini notation strings)

6.1.3 pseudo variables

cat(c3, r, e3)
cat("c3",silence,"e3")

6.1.4 locations

cat(c3, e3)

cat (
reify("c3") .withLocation([1,4,4],[1,6,6]1),
reify("e3") .withLocation([1,8,8],[1,10,10])
)

mini("c3 e3")
with locations:

// HC3 63”
mini("c3 e3").withMiniLocation([1,0,0],[1,7,7])

(talk about mini adding locations of mini notation parser)

6.1.5 top level await

const p = (await piano()).toDestination()
cat(c3) .tone(p)

(async () =>{
const p = (await piano()).toDestination();
return cat("c3").tone(p);

»o

7. MUSICAL EXAMPLES

8. ONGOING WORK/FUTURE AIMS

e WASM Sound Backend
e OSC -> Supercollider

e mininotation as the regex of metre

That Roberts (2016) are excellent, I reference their work
at least twice per sentence (Roberts 2016, 3).

"y 2 3"

9. REFERENCES

e gibber
e krill
e glicol

Alternate Timelines for TidalCycles. 2021. Valdivia, Chile.
https://zenodo.org/record /5788732.

Mc Lean, Alex, Giovanni Fanfani, and Ellen Harlizius-
Kliick. 2018. Cyclic Patterns of Movement Across
Weaving, Epiplok and Live Coding. Dancecult. Jour-
nal of Electronic Music Dance Culture 10 (1): 530.
https://doi.org/10.12801/1947-5403.2018.10.01.01.

McLean, Alex. 2014. Making Programming Languages to
Dance to: Live Coding with Tidal. In Proceedings of the
2nd ACM SIGPLAN International Workshop on Func-
tional Art, Music, Modeling & Design, 6370. FARM 14.
New York, NY, USA: Association for Computing Ma-
chinery. https://doi.org/10.1145/2633638.2633647.

McLean, Alex, and Ellen Harlizius-Kliick. 2018. Fabricat-
ing Algorithmic Art. In Parsing Digital, 1021. London,
UK: Austrian Cultural Forum. https://doi.org/10.5281/
zenodo 2152744,

Rationalizing Musical Time: Syntactic and Symbolic-
Numeric Approaches*. n.d. Accessed April 14, 2022.
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=
(A7 7129,

Roberts, Charles. 2016. Code as Information and Code as
Spectacle. International Journal of Performance Arts
and Digital Media 12 (2): 2016. https://doi.org/10]
1080/14794713.2016.1227602.

Scopus Preview - Scopus - Welcome to Scopus. n.d.
Wuww.scopus.com. Accessed April 14, 2022. https:
/ /www.scopus.com/home.uri.

Spiegel, Laurie. n.d. Manipulations of Musical Patterns.
Proceedings of the Symposium on Small Computers in
. Accessed April 14, 2022. https://www.academia.edu/
664807 /Manipulations_of_musical _patterns.

TidalVortex Zero. 2022. Limerick, Ireland. https://zenodo.
org/record/6456380.

https://zenodo.org/record/5788732
https://doi.org/10.12801/1947-5403.2018.10.01.01
https://doi.org/10.1145/2633638.2633647
https://doi.org/10.5281/zenodo.2155745
https://doi.org/10.5281/zenodo.2155745
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.517.7129
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.517.7129
https://doi.org/10.1080/14794713.2016.1227602
https://doi.org/10.1080/14794713.2016.1227602
https://www.scopus.com/home.uri
https://www.scopus.com/home.uri
https://www.academia.edu/664807/Manipulations_of_musical_patterns
https://www.academia.edu/664807/Manipulations_of_musical_patterns
https://zenodo.org/record/6456380
https://zenodo.org/record/6456380

	Introduction
	Background
	Introducing Strudel
	Tidal patterns
	Mini Notation
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Strudel/web specifics
	User Code Transpilation
	double quotes -> mini calls
	operator overloading
	pseudo variables
	locations
	top level await

	Musical examples
	Ongoing work/future aims
	References

