2023-12-31 11:39:14 -05:00

518 lines
15 KiB
JavaScript

/*
superdough.mjs - <short description TODO>
Copyright (C) 2022 Strudel contributors - see <https://github.com/tidalcycles/strudel/blob/main/packages/superdough/superdough.mjs>
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
import './feedbackdelay.mjs';
import './reverb.mjs';
import './vowel.mjs';
import { clamp, nanFallback } from './util.mjs';
import workletsUrl from './worklets.mjs?url';
import { createFilter, gainNode, getCompressor } from './helpers.mjs';
import { map } from 'nanostores';
import { logger } from './logger.mjs';
import { loadBuffer } from './sampler.mjs';
export const soundMap = map();
export function registerSound(key, onTrigger, data = {}) {
soundMap.setKey(key, { onTrigger, data });
}
export function getSound(s) {
return soundMap.get()[s];
}
export const resetLoadedSounds = () => soundMap.set({});
let audioContext;
export const setDefaultAudioContext = () => {
audioContext = new AudioContext();
return audioContext;
};
export const getAudioContext = () => {
if (!audioContext) {
return setDefaultAudioContext();
}
return audioContext;
};
let workletsLoading;
function loadWorklets() {
if (workletsLoading) {
return workletsLoading;
}
workletsLoading = getAudioContext().audioWorklet.addModule(workletsUrl);
return workletsLoading;
}
function getWorklet(ac, processor, params) {
const node = new AudioWorkletNode(ac, processor);
Object.entries(params).forEach(([key, value]) => {
node.parameters.get(key).value = value;
});
return node;
}
// this function should be called on first user interaction (to avoid console warning)
export async function initAudio(options = {}) {
const { disableWorklets = false } = options;
if (typeof window !== 'undefined') {
await getAudioContext().resume();
if (!disableWorklets) {
await loadWorklets().catch((err) => {
console.warn('could not load AudioWorklet effects coarse, crush and shape', err);
});
} else {
console.log('disableWorklets: AudioWorklet effects coarse, crush and shape are skipped!');
}
}
}
export async function initAudioOnFirstClick(options) {
return new Promise((resolve) => {
document.addEventListener('click', async function listener() {
await initAudio(options);
resolve();
document.removeEventListener('click', listener);
});
});
}
let delays = {};
const maxfeedback = 0.98;
let channelMerger, destinationGain;
//update the output channel configuration to match user's audio device
export function initializeAudioOutput() {
const audioContext = getAudioContext();
const maxChannelCount = audioContext.destination.maxChannelCount;
audioContext.destination.channelCount = maxChannelCount;
channelMerger = new ChannelMergerNode(audioContext, { numberOfInputs: audioContext.destination.channelCount });
destinationGain = new GainNode(audioContext);
channelMerger.connect(destinationGain);
destinationGain.connect(audioContext.destination);
}
// input: AudioNode, channels: ?Array<int>
export const connectToDestination = (input, channels = [0, 1]) => {
const ctx = getAudioContext();
if (channelMerger == null) {
initializeAudioOutput();
}
//This upmix can be removed if correct channel counts are set throughout the app,
// and then strudel could theoretically support surround sound audio files
const stereoMix = new StereoPannerNode(ctx);
input.connect(stereoMix);
const splitter = new ChannelSplitterNode(ctx, {
numberOfOutputs: stereoMix.channelCount,
});
stereoMix.connect(splitter);
channels.forEach((ch, i) => {
splitter.connect(channelMerger, i % stereoMix.channelCount, clamp(ch, 0, ctx.destination.channelCount - 1));
});
};
export const panic = () => {
if (destinationGain == null) {
return;
}
destinationGain.gain.linearRampToValueAtTime(0, getAudioContext().currentTime + 0.01);
destinationGain = null;
channelMerger == null;
};
function getDelay(orbit, delaytime, delayfeedback, t) {
if (delayfeedback > maxfeedback) {
//logger(`delayfeedback was clamped to ${maxfeedback} to save your ears`);
}
delayfeedback = clamp(delayfeedback, 0, 0.98);
if (!delays[orbit]) {
const ac = getAudioContext();
const dly = ac.createFeedbackDelay(1, delaytime, delayfeedback);
dly.start?.(t); // for some reason, this throws when audion extension is installed..
connectToDestination(dly, [0, 1]);
delays[orbit] = dly;
}
delays[orbit].delayTime.value !== delaytime && delays[orbit].delayTime.setValueAtTime(delaytime, t);
delays[orbit].feedback.value !== delayfeedback && delays[orbit].feedback.setValueAtTime(delayfeedback, t);
return delays[orbit];
}
// each orbit will have its own lfo
const phaserLFOs = {};
function getPhaser(orbit, t, speed = 1, depth = 0.5, centerFrequency = 1000, sweep = 2000) {
//gain
const ac = getAudioContext();
const lfoGain = ac.createGain();
lfoGain.gain.value = sweep;
//LFO
if (phaserLFOs[orbit] == null) {
phaserLFOs[orbit] = ac.createOscillator();
phaserLFOs[orbit].frequency.value = speed;
phaserLFOs[orbit].type = 'sine';
phaserLFOs[orbit].start();
}
phaserLFOs[orbit].connect(lfoGain);
if (phaserLFOs[orbit].frequency.value != speed) {
phaserLFOs[orbit].frequency.setValueAtTime(speed, t);
}
//filters
const numStages = 2; //num of filters in series
let fOffset = 0;
const filterChain = [];
for (let i = 0; i < numStages; i++) {
const filter = ac.createBiquadFilter();
filter.type = 'notch';
filter.gain.value = 1;
filter.frequency.value = centerFrequency + fOffset;
filter.Q.value = 2 - Math.min(Math.max(depth * 2, 0), 1.9);
lfoGain.connect(filter.detune);
fOffset += 282;
if (i > 0) {
filterChain[i - 1].connect(filter);
}
filterChain.push(filter);
}
return filterChain[filterChain.length - 1];
}
let reverbs = {};
let hasChanged = (now, before) => now !== undefined && now !== before;
function getReverb(orbit, duration, fade, lp, dim, ir) {
// If no reverb has been created for a given orbit, create one
if (!reverbs[orbit]) {
const ac = getAudioContext();
const reverb = ac.createReverb(duration, fade, lp, dim, ir);
connectToDestination(reverb, [0, 1]);
reverbs[orbit] = reverb;
}
if (
hasChanged(duration, reverbs[orbit].duration) ||
hasChanged(fade, reverbs[orbit].fade) ||
hasChanged(lp, reverbs[orbit].lp) ||
hasChanged(dim, reverbs[orbit].dim) ||
reverbs[orbit].ir !== ir
) {
// only regenerate when something has changed
// avoids endless regeneration on things like
// stack(s("a"), s("b").rsize(8)).room(.5)
// this only works when args may stay undefined until here
// setting default values breaks this
reverbs[orbit].generate(duration, fade, lp, dim, ir);
}
return reverbs[orbit];
}
export let analyser, analyserData /* s = {} */;
export function getAnalyser(/* orbit, */ fftSize = 2048) {
if (!analyser /*s [orbit] */) {
const analyserNode = getAudioContext().createAnalyser();
analyserNode.fftSize = fftSize;
// getDestination().connect(analyserNode);
analyser /* s[orbit] */ = analyserNode;
//analyserData = new Uint8Array(analyser.frequencyBinCount);
analyserData = new Float32Array(analyser.frequencyBinCount);
}
if (analyser /* s[orbit] */.fftSize !== fftSize) {
analyser /* s[orbit] */.fftSize = fftSize;
//analyserData = new Uint8Array(analyser.frequencyBinCount);
analyserData = new Float32Array(analyser.frequencyBinCount);
}
return analyser /* s[orbit] */;
}
export function getAnalyzerData(type = 'time') {
const getter = {
time: () => analyser?.getFloatTimeDomainData(analyserData),
frequency: () => analyser?.getFloatFrequencyData(analyserData),
}[type];
if (!getter) {
throw new Error(`getAnalyzerData: ${type} not supported. use one of ${Object.keys(getter).join(', ')}`);
}
getter();
return analyserData;
}
function effectSend(input, effect, wet) {
const send = gainNode(wet);
input.connect(send);
send.connect(effect);
return send;
}
export const superdough = async (value, deadline, hapDuration) => {
const ac = getAudioContext();
if (typeof value !== 'object') {
throw new Error(
`expected hap.value to be an object, but got "${value}". Hint: append .note() or .s() to the end`,
'error',
);
}
// duration is passed as value too..
value.duration = hapDuration;
// calculate absolute time
let t = ac.currentTime + deadline;
// destructure
let {
s = 'triangle',
bank,
source,
gain = 0.8,
postgain = 1,
density = 0.03,
// filters
ftype = '12db',
fanchor = 0.5,
// low pass
cutoff,
lpenv,
lpattack = 0.01,
lpdecay = 0.01,
lpsustain = 1,
lprelease = 0.01,
resonance = 1,
// high pass
hpenv,
hcutoff,
hpattack = 0.01,
hpdecay = 0.01,
hpsustain = 1,
hprelease = 0.01,
hresonance = 1,
// band pass
bpenv,
bandf,
bpattack = 0.01,
bpdecay = 0.01,
bpsustain = 1,
bprelease = 0.01,
bandq = 1,
channels = [1, 2],
//phaser
phaser,
phaserdepth = 0.75,
phasersweep,
phasercenter,
//
coarse,
crush,
shape,
pan,
vowel,
delay = 0,
delayfeedback = 0.5,
delaytime = 0.25,
orbit = 1,
room,
roomfade,
roomlp,
roomdim,
roomsize,
ir,
i = 0,
velocity = 1,
analyze, // analyser wet
fft = 8, // fftSize 0 - 10
compressor: compressorThreshold,
compressorRatio,
compressorKnee,
compressorAttack,
compressorRelease,
} = value;
gain = nanFallback(gain, 1);
//music programs/audio gear usually increments inputs/outputs from 1, so imitate that behavior
channels = (Array.isArray(channels) ? channels : [channels]).map((ch) => ch - 1);
gain *= velocity; // legacy fix for velocity
let toDisconnect = []; // audio nodes that will be disconnected when the source has ended
const onended = () => {
toDisconnect.forEach((n) => n?.disconnect());
};
if (bank && s) {
s = `${bank}_${s}`;
}
// get source AudioNode
let sourceNode;
if (source) {
sourceNode = source(t, value, hapDuration);
} else if (getSound(s)) {
const { onTrigger } = getSound(s);
const soundHandle = await onTrigger(t, value, onended);
if (soundHandle) {
sourceNode = soundHandle.node;
soundHandle.stop(t + hapDuration);
}
} else {
throw new Error(`sound ${s} not found! Is it loaded?`);
}
if (!sourceNode) {
// if onTrigger does not return anything, we will just silently skip
// this can be used for things like speed(0) in the sampler
return;
}
if (ac.currentTime > t) {
logger('[webaudio] skip hap: still loading', ac.currentTime - t);
return;
}
const chain = []; // audio nodes that will be connected to each other sequentially
chain.push(sourceNode);
// gain stage
chain.push(gainNode(gain));
if (cutoff !== undefined) {
let lp = () =>
createFilter(
ac,
'lowpass',
cutoff,
resonance,
lpattack,
lpdecay,
lpsustain,
lprelease,
lpenv,
t,
t + hapDuration,
fanchor,
);
chain.push(lp());
if (ftype === '24db') {
chain.push(lp());
}
}
if (hcutoff !== undefined) {
let hp = () =>
createFilter(
ac,
'highpass',
hcutoff,
hresonance,
hpattack,
hpdecay,
hpsustain,
hprelease,
hpenv,
t,
t + hapDuration,
fanchor,
);
chain.push(hp());
if (ftype === '24db') {
chain.push(hp());
}
}
if (bandf !== undefined) {
let bp = () =>
createFilter(
ac,
'bandpass',
bandf,
bandq,
bpattack,
bpdecay,
bpsustain,
bprelease,
bpenv,
t,
t + hapDuration,
fanchor,
);
chain.push(bp());
if (ftype === '24db') {
chain.push(bp());
}
}
if (vowel !== undefined) {
const vowelFilter = ac.createVowelFilter(vowel);
chain.push(vowelFilter);
}
// effects
coarse !== undefined && chain.push(getWorklet(ac, 'coarse-processor', { coarse }));
crush !== undefined && chain.push(getWorklet(ac, 'crush-processor', { crush }));
shape !== undefined && chain.push(getWorklet(ac, 'shape-processor', { shape }));
compressorThreshold !== undefined &&
chain.push(
getCompressor(ac, compressorThreshold, compressorRatio, compressorKnee, compressorAttack, compressorRelease),
);
// panning
if (pan !== undefined) {
const panner = ac.createStereoPanner();
panner.pan.value = 2 * pan - 1;
chain.push(panner);
}
// phaser
if (phaser !== undefined && phaserdepth > 0) {
const phaserFX = getPhaser(orbit, t, phaser, phaserdepth, phasercenter, phasersweep);
chain.push(phaserFX);
}
// last gain
const post = new GainNode(ac, { gain: postgain });
chain.push(post);
connectToDestination(post, channels);
// delay
let delaySend;
if (delay > 0 && delaytime > 0 && delayfeedback > 0) {
const delyNode = getDelay(orbit, delaytime, delayfeedback, t);
delaySend = effectSend(post, delyNode, delay);
}
// reverb
let reverbSend;
if (room > 0) {
let roomIR;
if (ir !== undefined) {
let url;
let sample = getSound(ir);
if (Array.isArray(sample)) {
url = sample.data.samples[i % sample.data.samples.length];
} else if (typeof sample === 'object') {
url = Object.values(sample.data.samples).flat()[i % Object.values(sample.data.samples).length];
}
roomIR = await loadBuffer(url, ac, ir, 0);
}
const reverbNode = getReverb(orbit, roomsize, roomfade, roomlp, roomdim, roomIR);
reverbSend = effectSend(post, reverbNode, room);
}
// analyser
let analyserSend;
if (analyze) {
const analyserNode = getAnalyser(/* orbit, */ 2 ** (fft + 5));
analyserSend = effectSend(post, analyserNode, analyze);
}
// connect chain elements together
chain.slice(1).reduce((last, current) => last.connect(current), chain[0]);
// toDisconnect = all the node that should be disconnected in onended callback
// this is crucial for performance
toDisconnect = chain.concat([delaySend, reverbSend, analyserSend]);
};
export const superdoughTrigger = (t, hap, ct, cps) => superdough(hap, t - ct, hap.duration / cps, cps);