Jade (Rose) Rowland 003e3b790d bounds
2025-03-03 21:29:30 -05:00

761 lines
20 KiB
JavaScript

// coarse, crush, and shape processors adapted from dktr0's webdirt: https://github.com/dktr0/WebDirt/blob/5ce3d698362c54d6e1b68acc47eb2955ac62c793/dist/AudioWorklets.js
// LICENSE GNU General Public License v3.0 see https://github.com/dktr0/WebDirt/blob/main/LICENSE
// TOFIX: THIS FILE DOES NOT SUPPORT IMPORTS ON DEPOLYMENT
import OLAProcessor from './ola-processor';
import FFT from './fft.js';
const clamp = (num, min, max) => Math.min(Math.max(num, min), max);
const _mod = (n, m) => ((n % m) + m) % m;
const blockSize = 128;
// adjust waveshape to remove frequencies above nyquist to prevent aliasing
// referenced from https://www.kvraudio.com/forum/viewtopic.php?t=375517
function polyBlep(phase, dt) {
// 0 <= phase < 1
if (phase < dt) {
phase /= dt;
// 2 * (phase - phase^2/2 - 0.5)
return phase + phase - phase * phase - 1;
}
// -1 < phase < 0
else if (phase > 1 - dt) {
phase = (phase - 1) / dt;
// 2 * (phase^2/2 + phase + 0.5)
return phase * phase + phase + phase + 1;
}
// 0 otherwise
else {
return 0;
}
}
const waveshapes = {
tri(phase, skew = 0.5) {
const x = 1 - skew;
if (phase >= skew) {
return 1 / x - phase / x;
}
return phase / skew;
},
sine(phase) {
return Math.sin(Math.PI * 2 * phase) * 0.5 + 0.5;
},
ramp(phase) {
return phase;
},
saw(phase) {
return 1 - phase;
},
square(phase, skew = 0.5) {
if (phase >= skew) {
return 0;
}
return 1;
},
custom(phase, values = [0, 1]) {
const numParts = values.length - 1;
const currPart = Math.floor(phase * numParts);
const partLength = 1 / numParts;
const startVal = clamp(values[currPart], 0, 1);
const endVal = clamp(values[currPart + 1], 0, 1);
const y2 = endVal;
const y1 = startVal;
const x1 = 0;
const x2 = partLength;
const slope = (y2 - y1) / (x2 - x1);
return slope * (phase - partLength * currPart) + startVal;
},
sawblep(phase, dt) {
const v = 2 * phase - 1;
return v - polyBlep(phase, dt);
},
};
function getParamValue(block, param) {
if (param.length > 1) {
return param[block];
}
return param[0];
}
const waveShapeNames = Object.keys(waveshapes);
class LFOProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [
{ name: 'time', defaultValue: 0 },
{ name: 'end', defaultValue: 0 },
{ name: 'frequency', defaultValue: 0.5 },
{ name: 'skew', defaultValue: 0.5 },
{ name: 'depth', defaultValue: 1 },
{ name: 'phaseoffset', defaultValue: 0 },
{ name: 'shape', defaultValue: 0 },
{ name: 'dcoffset', defaultValue: 0 },
];
}
constructor() {
super();
this.phase;
}
incrementPhase(dt) {
this.phase += dt;
if (this.phase > 1.0) {
this.phase = this.phase - 1;
}
}
process(inputs, outputs, parameters) {
// eslint-disable-next-line no-undef
if (currentTime >= parameters.end[0]) {
return false;
}
const output = outputs[0];
const frequency = parameters['frequency'][0];
const time = parameters['time'][0];
const depth = parameters['depth'][0];
const skew = parameters['skew'][0];
const phaseoffset = parameters['phaseoffset'][0];
const dcoffset = parameters['dcoffset'][0];
const shape = waveShapeNames[parameters['shape'][0]];
const blockSize = output[0].length ?? 0;
if (this.phase == null) {
this.phase = _mod(time * frequency + phaseoffset, 1);
}
// eslint-disable-next-line no-undef
const dt = frequency / sampleRate;
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < output.length; i++) {
const modval = (waveshapes[shape](this.phase, skew) + dcoffset) * depth;
output[i][n] = modval;
}
this.incrementPhase(dt);
}
return true;
}
}
registerProcessor('lfo-processor', LFOProcessor);
class CoarseProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [{ name: 'coarse', defaultValue: 1 }];
}
constructor() {
super();
this.started = false;
}
process(inputs, outputs, parameters) {
const input = inputs[0];
const output = outputs[0];
const hasInput = !(input[0] === undefined);
if (this.started && !hasInput) {
return false;
}
this.started = hasInput;
let coarse = parameters.coarse[0] ?? 0;
coarse = Math.max(1, coarse);
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < input.length; i++) {
output[i][n] = n % coarse === 0 ? input[i][n] : output[i][n - 1];
}
}
return true;
}
}
registerProcessor('coarse-processor', CoarseProcessor);
class CrushProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [{ name: 'crush', defaultValue: 0 }];
}
constructor() {
super();
this.started = false;
}
process(inputs, outputs, parameters) {
const input = inputs[0];
const output = outputs[0];
const hasInput = !(input[0] === undefined);
if (this.started && !hasInput) {
return false;
}
this.started = hasInput;
let crush = parameters.crush[0] ?? 8;
crush = Math.max(1, crush);
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < input.length; i++) {
const x = Math.pow(2, crush - 1);
output[i][n] = Math.round(input[i][n] * x) / x;
}
}
return true;
}
}
registerProcessor('crush-processor', CrushProcessor);
class ShapeProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [
{ name: 'shape', defaultValue: 0 },
{ name: 'postgain', defaultValue: 1 },
];
}
constructor() {
super();
this.started = false;
}
process(inputs, outputs, parameters) {
const input = inputs[0];
const output = outputs[0];
const hasInput = !(input[0] === undefined);
if (this.started && !hasInput) {
return false;
}
this.started = hasInput;
let shape = parameters.shape[0];
shape = shape < 1 ? shape : 1.0 - 4e-10;
shape = (2.0 * shape) / (1.0 - shape);
const postgain = Math.max(0.001, Math.min(1, parameters.postgain[0]));
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < input.length; i++) {
output[i][n] = (((1 + shape) * input[i][n]) / (1 + shape * Math.abs(input[i][n]))) * postgain;
}
}
return true;
}
}
registerProcessor('shape-processor', ShapeProcessor);
function fast_tanh(x) {
const x2 = x * x;
return (x * (27.0 + x2)) / (27.0 + 9.0 * x2);
}
const _PI = 3.14159265359;
//adapted from https://github.com/TheBouteillacBear/webaudioworklet-wasm?tab=MIT-1-ov-file
class LadderProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [
{ name: 'frequency', defaultValue: 500 },
{ name: 'q', defaultValue: 1 },
{ name: 'drive', defaultValue: 0.69 },
];
}
constructor() {
super();
this.started = false;
this.p0 = [0, 0];
this.p1 = [0, 0];
this.p2 = [0, 0];
this.p3 = [0, 0];
this.p32 = [0, 0];
this.p33 = [0, 0];
this.p34 = [0, 0];
}
process(inputs, outputs, parameters) {
const input = inputs[0];
const output = outputs[0];
const hasInput = !(input[0] === undefined);
if (this.started && !hasInput) {
return false;
}
this.started = hasInput;
const resonance = parameters.q[0];
const drive = clamp(Math.exp(parameters.drive[0]), 0.1, 2000);
let cutoff = parameters.frequency[0];
// eslint-disable-next-line no-undef
cutoff = (cutoff * 2 * _PI) / sampleRate;
cutoff = cutoff > 1 ? 1 : cutoff;
const k = Math.min(8, resonance * 0.4);
// drive makeup * resonance volume loss makeup
let makeupgain = (1 / drive) * Math.min(1.75, 1 + k);
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < input.length; i++) {
const out = this.p3[i] * 0.360891 + this.p32[i] * 0.41729 + this.p33[i] * 0.177896 + this.p34[i] * 0.0439725;
this.p34[i] = this.p33[i];
this.p33[i] = this.p32[i];
this.p32[i] = this.p3[i];
this.p0[i] += (fast_tanh(input[i][n] * drive - k * out) - fast_tanh(this.p0[i])) * cutoff;
this.p1[i] += (fast_tanh(this.p0[i]) - fast_tanh(this.p1[i])) * cutoff;
this.p2[i] += (fast_tanh(this.p1[i]) - fast_tanh(this.p2[i])) * cutoff;
this.p3[i] += (fast_tanh(this.p2[i]) - fast_tanh(this.p3[i])) * cutoff;
output[i][n] = out * makeupgain;
}
}
return true;
}
}
registerProcessor('ladder-processor', LadderProcessor);
class DistortProcessor extends AudioWorkletProcessor {
static get parameterDescriptors() {
return [
{ name: 'distort', defaultValue: 0 },
{ name: 'postgain', defaultValue: 1 },
];
}
constructor() {
super();
this.started = false;
}
process(inputs, outputs, parameters) {
const input = inputs[0];
const output = outputs[0];
const hasInput = !(input[0] === undefined);
if (this.started && !hasInput) {
return false;
}
this.started = hasInput;
const shape = Math.expm1(parameters.distort[0]);
const postgain = Math.max(0.001, Math.min(1, parameters.postgain[0]));
for (let n = 0; n < blockSize; n++) {
for (let i = 0; i < input.length; i++) {
output[i][n] = (((1 + shape) * input[i][n]) / (1 + shape * Math.abs(input[i][n]))) * postgain;
}
}
return true;
}
}
registerProcessor('distort-processor', DistortProcessor);
// SUPERSAW
function lerp(a, b, n) {
return n * (b - a) + a;
}
function getUnisonDetune(unison, detune, voiceIndex) {
if (unison < 2) {
return 0;
}
return lerp(-detune * 0.5, detune * 0.5, voiceIndex / (unison - 1));
}
function applySemitoneDetuneToFrequency(frequency, detune) {
return frequency * Math.pow(2, detune / 12);
}
class SuperSawOscillatorProcessor extends AudioWorkletProcessor {
constructor() {
super();
this.phase = [];
}
static get parameterDescriptors() {
return [
{
name: 'begin',
defaultValue: 0,
max: Number.POSITIVE_INFINITY,
min: 0,
},
{
name: 'end',
defaultValue: 0,
max: Number.POSITIVE_INFINITY,
min: 0,
},
{
name: 'frequency',
defaultValue: 440,
min: Number.EPSILON,
},
{
name: 'panspread',
defaultValue: 0.4,
min: 0,
max: 1,
},
{
name: 'freqspread',
defaultValue: 0.2,
min: 0,
},
{
name: 'detune',
defaultValue: 0,
min: 0,
},
{
name: 'voices',
defaultValue: 5,
min: 1,
},
];
}
process(input, outputs, params) {
// eslint-disable-next-line no-undef
if (currentTime <= params.begin[0]) {
return true;
}
// eslint-disable-next-line no-undef
if (currentTime >= params.end[0]) {
// this.port.postMessage({ type: 'onended' });
return false;
}
let frequency = params.frequency[0];
//apply detune in cents
frequency = frequency * Math.pow(2, params.detune[0] / 1200);
const output = outputs[0];
const voices = params.voices[0];
const freqspread = params.freqspread[0];
const panspread = params.panspread[0] * 0.5 + 0.5;
const gain1 = Math.sqrt(1 - panspread);
const gain2 = Math.sqrt(panspread);
for (let n = 0; n < voices; n++) {
const isOdd = (n & 1) == 1;
//applies unison "spread" detune in semitones
const freq = applySemitoneDetuneToFrequency(frequency, getUnisonDetune(voices, freqspread, n));
let gainL = gain1;
let gainR = gain2;
// invert right and left gain
if (isOdd) {
gainL = gain2;
gainR = gain1;
}
// eslint-disable-next-line no-undef
const dt = freq / sampleRate;
for (let i = 0; i < output[0].length; i++) {
this.phase[n] = this.phase[n] ?? Math.random();
const v = waveshapes.sawblep(this.phase[n], dt);
output[0][i] = output[0][i] + v * gainL;
output[1][i] = output[1][i] + v * gainR;
this.phase[n] += dt;
if (this.phase[n] > 1.0) {
this.phase[n] = this.phase[n] - 1;
}
}
}
return true;
}
}
registerProcessor('supersaw-oscillator', SuperSawOscillatorProcessor);
// Phase Vocoder sourced from // sourced from https://github.com/olvb/phaze/tree/master?tab=readme-ov-file
const BUFFERED_BLOCK_SIZE = 2048;
function genHannWindow(length) {
let win = new Float32Array(length);
for (var i = 0; i < length; i++) {
win[i] = 0.5 * (1 - Math.cos((2 * Math.PI * i) / length));
}
return win;
}
class PhaseVocoderProcessor extends OLAProcessor {
static get parameterDescriptors() {
return [
{
name: 'pitchFactor',
defaultValue: 1.0,
},
];
}
constructor(options) {
options.processorOptions = {
blockSize: BUFFERED_BLOCK_SIZE,
};
super(options);
this.fftSize = this.blockSize;
this.timeCursor = 0;
this.hannWindow = genHannWindow(this.blockSize);
// prepare FFT and pre-allocate buffers
this.fft = new FFT(this.fftSize);
this.freqComplexBuffer = this.fft.createComplexArray();
this.freqComplexBufferShifted = this.fft.createComplexArray();
this.timeComplexBuffer = this.fft.createComplexArray();
this.magnitudes = new Float32Array(this.fftSize / 2 + 1);
this.peakIndexes = new Int32Array(this.magnitudes.length);
this.nbPeaks = 0;
}
processOLA(inputs, outputs, parameters) {
// no automation, take last value
let pitchFactor = parameters.pitchFactor[parameters.pitchFactor.length - 1];
if (pitchFactor < 0) {
pitchFactor = pitchFactor * 0.25;
}
pitchFactor = Math.max(0, pitchFactor + 1);
for (var i = 0; i < this.nbInputs; i++) {
for (var j = 0; j < inputs[i].length; j++) {
// big assumption here: output is symetric to input
var input = inputs[i][j];
var output = outputs[i][j];
this.applyHannWindow(input);
this.fft.realTransform(this.freqComplexBuffer, input);
this.computeMagnitudes();
this.findPeaks();
this.shiftPeaks(pitchFactor);
this.fft.completeSpectrum(this.freqComplexBufferShifted);
this.fft.inverseTransform(this.timeComplexBuffer, this.freqComplexBufferShifted);
this.fft.fromComplexArray(this.timeComplexBuffer, output);
this.applyHannWindow(output);
}
}
this.timeCursor += this.hopSize;
}
/** Apply Hann window in-place */
applyHannWindow(input) {
for (var i = 0; i < this.blockSize; i++) {
input[i] = input[i] * this.hannWindow[i] * 1.62;
}
}
/** Compute squared magnitudes for peak finding **/
computeMagnitudes() {
var i = 0,
j = 0;
while (i < this.magnitudes.length) {
let real = this.freqComplexBuffer[j];
let imag = this.freqComplexBuffer[j + 1];
// no need to sqrt for peak finding
this.magnitudes[i] = real ** 2 + imag ** 2;
i += 1;
j += 2;
}
}
/** Find peaks in spectrum magnitudes **/
findPeaks() {
this.nbPeaks = 0;
var i = 2;
let end = this.magnitudes.length - 2;
while (i < end) {
let mag = this.magnitudes[i];
if (this.magnitudes[i - 1] >= mag || this.magnitudes[i - 2] >= mag) {
i++;
continue;
}
if (this.magnitudes[i + 1] >= mag || this.magnitudes[i + 2] >= mag) {
i++;
continue;
}
this.peakIndexes[this.nbPeaks] = i;
this.nbPeaks++;
i += 2;
}
}
/** Shift peaks and regions of influence by pitchFactor into new specturm */
shiftPeaks(pitchFactor) {
// zero-fill new spectrum
this.freqComplexBufferShifted.fill(0);
for (var i = 0; i < this.nbPeaks; i++) {
let peakIndex = this.peakIndexes[i];
let peakIndexShifted = Math.round(peakIndex * pitchFactor);
if (peakIndexShifted > this.magnitudes.length) {
break;
}
// find region of influence
var startIndex = 0;
var endIndex = this.fftSize;
if (i > 0) {
let peakIndexBefore = this.peakIndexes[i - 1];
startIndex = peakIndex - Math.floor((peakIndex - peakIndexBefore) / 2);
}
if (i < this.nbPeaks - 1) {
let peakIndexAfter = this.peakIndexes[i + 1];
endIndex = peakIndex + Math.ceil((peakIndexAfter - peakIndex) / 2);
}
// shift whole region of influence around peak to shifted peak
let startOffset = startIndex - peakIndex;
let endOffset = endIndex - peakIndex;
for (var j = startOffset; j < endOffset; j++) {
let binIndex = peakIndex + j;
let binIndexShifted = peakIndexShifted + j;
if (binIndexShifted >= this.magnitudes.length) {
break;
}
// apply phase correction
let omegaDelta = (2 * Math.PI * (binIndexShifted - binIndex)) / this.fftSize;
let phaseShiftReal = Math.cos(omegaDelta * this.timeCursor);
let phaseShiftImag = Math.sin(omegaDelta * this.timeCursor);
let indexReal = binIndex * 2;
let indexImag = indexReal + 1;
let valueReal = this.freqComplexBuffer[indexReal];
let valueImag = this.freqComplexBuffer[indexImag];
let valueShiftedReal = valueReal * phaseShiftReal - valueImag * phaseShiftImag;
let valueShiftedImag = valueReal * phaseShiftImag + valueImag * phaseShiftReal;
let indexShiftedReal = binIndexShifted * 2;
let indexShiftedImag = indexShiftedReal + 1;
this.freqComplexBufferShifted[indexShiftedReal] += valueShiftedReal;
this.freqComplexBufferShifted[indexShiftedImag] += valueShiftedImag;
}
}
}
}
registerProcessor('phase-vocoder-processor', PhaseVocoderProcessor);
// Adapted from https://www.musicdsp.org/en/latest/Effects/221-band-limited-pwm-generator.html
class PulseOscillatorProcessor extends AudioWorkletProcessor {
constructor() {
super();
this.pi = _PI;
this.phi = -this.pi; // phase
this.Y0 = 0; // feedback memories
this.Y1 = 0;
this.PW = this.pi; // pulse width
this.B = 2.3; // feedback coefficient
this.dphif = 0; // filtered phase increment
this.envf = 0; // filtered envelope
}
static get parameterDescriptors() {
return [
{
name: 'begin',
defaultValue: 0,
max: Number.POSITIVE_INFINITY,
min: 0,
},
{
name: 'end',
defaultValue: 0,
max: Number.POSITIVE_INFINITY,
min: 0,
},
{
name: 'frequency',
defaultValue: 440,
min: Number.EPSILON,
},
{
name: 'detune',
defaultValue: 0,
min: Number.NEGATIVE_INFINITY,
max: Number.POSITIVE_INFINITY,
},
{
name: 'pulsewidth',
defaultValue: 1,
min: 0,
max: Number.POSITIVE_INFINITY,
},
];
}
process(inputs, outputs, params) {
if (currentTime <= params.begin[0]) {
return true;
}
if (currentTime >= params.end[0]) {
return false;
}
const output = outputs[0];
let env = 1,
dphi;
for (let i = 0; i < (output[0].length ?? 0); i++) {
const pw = (1 - clamp(getParamValue(i, params.pulsewidth), -0.99, 0.99)) * this.pi;
const detune = getParamValue(i, params.detune);
const freq = applySemitoneDetuneToFrequency(getParamValue(i, params.frequency), detune / 100);
dphi = freq * (this.pi / (sampleRate * 0.5)); // phase increment
this.dphif += 0.1 * (dphi - this.dphif);
env *= 0.9998; // exponential decay envelope
this.envf += 0.1 * (env - this.envf);
// Feedback coefficient control
this.B = 2.3 * (1 - 0.0001 * freq); // feedback limitation
if (this.B < 0) this.B = 0;
// Waveform generation (half-Tomisawa oscillators)
this.phi += this.dphif; // phase increment
if (this.phi >= this.pi) this.phi -= 2 * this.pi; // phase wrapping
// First half-Tomisawa generator
let out0 = Math.cos(this.phi + this.B * this.Y0); // self-phase modulation
this.Y0 = 0.5 * (out0 + this.Y0); // anti-hunting filter
// Second half-Tomisawa generator (with phase offset for pulse width)
let out1 = Math.cos(this.phi + this.B * this.Y1 + pw);
this.Y1 = 0.5 * (out1 + this.Y1); // anti-hunting filter
for (let o = 0; o < output.length; o++) {
// Combination of both oscillators with envelope applied
output[o][i] = 0.15 * (out0 - out1) * this.envf;
}
}
return true; // keep the audio processing going
}
}
registerProcessor('pulse-oscillator', PulseOscillatorProcessor);