
Strudel: Algorithmic Patterns for the Web

Felix Roos
Lembach, France

flix91@gmail.com

Alex McLean
Then Try This

Sheffield/Penryn, UK
alex@slab.org

1. INTRODUCTION
This paper introduces StrudelCycles (generally known

as just Strudel, including in the following), an alternative
implementation of the TidalCycles live coding system, using
the JavaScript programming language. It is an attempt
to make live coding more accessible through creating a
system that runs entirely in the browser, while opening
Tidals approach to algorithmic patterns (Algorithmic
Pattern 2020) up to modern audio/visual web technologies.
The Strudel REPL is a live code editor dedicated to
manipulating strudel patterns while they play, with builtin
visual feedback. While Strudel is written in JavaScript, the
API is optimized for simplicity and readability by applying
code transformations on the syntax tree level, allowing
language operations that would otherwise be impossible.
The application supports multiple ways to output sound,
including Tone.js, Web Audio nodes, OSC messages and
WebMIDI. The project is split into multiple packages,
allowing granular reuse in other applications. Apart from
TidalCycles, it draws inspiration from prior projects like
TidalVortex (TidalVortex Zero 2022), Gibber (Charlie and
Joann 2012), Estuary (Ogborn and Beverley 2017) and
Feedforward (Feedforward 2020).

2. PORTING FROM HASKELL
The original TidalCycles (generally known as just Tidal)

is implemented as a domain specific language (DSL), embed-
ded in the Haskell pure functional programming language,
taking advantage of Haskells terse syntax and advanced,
strong type system. Javascript on the other hand, is a multi-
paradigm programming language, with a dynamic type sys-
tem. Because Tidal leans heavily on many of Haskells more
unique features, it was not clear whether it could mean-
ingfully be ported to a multi-paradigm scripting language.
However, this already proved to be the case with an earlier
port to Python [TidalVortex; TidalVortex Zero (2022)], and
we successfully implemented Tidals pure functional repre-
sentation of patterns in Strudel, including partial applica-
tion, and functor, applicative and monad structures. Over
the past few months since the project started in January
2022, a large part of Tidals functionality has already been

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2022, July 6–8, 2022, Cannes, France.

© 2022 Copyright held by the owner/author(s).

ported, including its mini-notation for polymetric sequences,
and a large part of its library of pattern manipulations. The
result is a terse and highly composable system, where just
about everything is a pattern, that may be transformed and
combined with other patterns in a myriad of ways.

3. REPRESENTING PATTERNS
The essence of Tidal are Patterns. Patterns are abstract

entities that represent flows of time as functions, by adapting
a technique called pure functional reactive programming.
Taking a time span as its input, a Pattern can output a set
of events that happen within that time span. It depends on
the structure of the Pattern how the events are located in
time. From now on, this process of generating events from
a time span will be called querying. Example:

const pattern = sequence(c3, [e3, g3]);
const events = pattern.query(0, 1);
console.log(events.map(e => e.show()))

In this example, we create a pattern using the sequence
function and query it for the timespan from 0 to 1. Those
numbers represent units of time called cycles. The length of
one cycle depends on the tempo, which defaults to one cycle
per second. The resulting events are:

[{ value: 'c3', begin: 0, end: 1/2 },
{ value: 'e3', begin: 1/2, end: 3/4 },
{ value: 'g3', begin: 3/4, end: 1 }]

Each event has a value, a begin time and an end time,
where time is represented as a fraction. In the above case,
the events are placed in sequential order, where c3 takes the
first half, and e3 and g3 together take the second half. This
temporal placement is the result of the sequence function,
which divides its arguments equally over one cycle. If an
argument is an array, the same rule applies to that part of
the cycle. In the example, e3 and g3 are divided equally
over the second half of the whole cycle.

In the REPL, the user only has to type in the pattern
itself, the querying will be handled by the scheduler. The
scheduler will repeatedly query the pattern for events, which
then will be used for playback.

4. MAKING PATTERNS
In practice, the end-user live coder will not deal with con-

structing patterns directly, but will rather build patterns
using Strudels extensive combinator library to create, com-
bine and transform patterns.



The live coder may use the sequence function as already
seen above, or more often the mini-notation for even terser
notation of rhythmic sequences. Such sequences are often
treated only a starting point for manipulation, where they
then are undergo pattern transformations such as repetition,
symmetry, interference or randomisation, potentially at mul-
tiple timescales. Because Strudel patterns are represented as
pure functions of time rather than as data structures, very
long and complex generative results can be represented and
manipulated without having to store the resulting sequences
in memory.

5. PATTERN EXAMPLE
The following example showcases how patterns can be uti-

lized to create musical complexity from simple parts, using
repetition and interference:

"<0 2 [4 6](3,4,1) 3*2>".scale('D minor')
.off(1/4, scaleTranspose(2))
.off(1/2, scaleTranspose(6))
.legato(.5)
.echo(4, 1/8, .5)
.tone((await piano()).chain(out()))
.pianoroll()

The pattern starts with a rhythm of numbers in mini no-
tation, which are interpreted inside the scale of D minor.
Without the scale function, the first line can be expressed
as:

"<d3 f3 [a3 c3](3, 4, 1) g3*2>"

This line could also be expressed without mini notation:

slowcat(d3, f3, [a3, c3].euclid(3, 4, 1), g3.fast(2))

• slowcat: play elements sequentially, where each lasts
one cycle

• brackets: elements inside brackets are divided equally
over the time of their parent

• euclid(p, s, o): place p pulses evenly over s steps,
with offset o, see https://taogaede.com/wp-
content/uploads/2020/01/Research-Paper-on-
Euclidean-Rhythms-Aug.-2018-Edit.pdf (cite)

• fast(n): speed up by n. g3.fast(2) will play g3 two
times.

• off(n, f): copy each event, offset it by n cycles and
apply function f

• legato(n): multiply duration of event with n

• echo(t, n, v): copy each event t times, with n cycles in
between each copy, decreasing velocity by v

• tone(instrument): play back each event with the given
Tone.js instrument

• pianoroll(): visualize events as midi notes in a pianoroll

• Description of structure of demo

• Links to examples/existing tutorial etc

6. TECHNICAL REQUIREMENTS
Space for one laptop + small audio interface (˜20 cm

x 20cm), with mains power. Stereo sound system, either
placed behind presenter (for direct monitoring) or with ad-
ditional stereo monitors. Audio from audio interface: stereo
pair 6,3mm jack outputs (balanced?) good question :) *
Projector / screen (HDMI.)

7. ACKNOWLEDGMENTS
Thanks to the Strudel and wider Tidal, live coding, we-

baudio and free/open source software communities for in-
spiration and support. Alex McLeans work on this project
is supported by a UKRI Future Leaders Fellowship [grant
number MR/V025260/1].

8. REFERENCES
Algorithmic Pattern. 2020. Birmingham UK. https:

//zenodo.org/record/4299661.
Charlie, Roberts, and Kuchera-Morin Joann. 2012. GIB-

BER: LIVE CODING AUDIO IN THE BROWSER.
International Computer Music Conference Proceed-
ings 2012. https://quod.lib.umich.edu/i/icmc/bbp2372.
2012.011/2/%E2%80%93gibber-live-coding-audio-in-the-browser?
page=root;size=150;view=text.

Feedforward. 2020. Birmingham. https://zenodo.org/
record/6353969.

Ogborn, David, and J. Beverley. 2017. Estuary:
Browser-Based Collaborative Projectional Live Cod-
ing of Musical Patterns. Www.semanticscholar.org.
https://www.semanticscholar.org/paper/Estuary%
3A-Browser-based-Collaborative-Projectional-Ogborn-Beverley/
c6b5d34575d6230dfd8751ca4af8e5f6e44d916b.

TidalVortex Zero. 2022. Limerick, Ireland. https://zenodo.
org/record/6456380.

https://zenodo.org/record/4299661
https://zenodo.org/record/4299661
https://quod.lib.umich.edu/i/icmc/bbp2372.2012.011/2/%E2%80%93gibber-live-coding-audio-in-the-browser?page=root;size=150;view=text
https://quod.lib.umich.edu/i/icmc/bbp2372.2012.011/2/%E2%80%93gibber-live-coding-audio-in-the-browser?page=root;size=150;view=text
https://quod.lib.umich.edu/i/icmc/bbp2372.2012.011/2/%E2%80%93gibber-live-coding-audio-in-the-browser?page=root;size=150;view=text
https://zenodo.org/record/6353969
https://zenodo.org/record/6353969
https://www.semanticscholar.org/paper/Estuary%3A-Browser-based-Collaborative-Projectional-Ogborn-Beverley/c6b5d34575d6230dfd8751ca4af8e5f6e44d916b
https://www.semanticscholar.org/paper/Estuary%3A-Browser-based-Collaborative-Projectional-Ogborn-Beverley/c6b5d34575d6230dfd8751ca4af8e5f6e44d916b
https://www.semanticscholar.org/paper/Estuary%3A-Browser-based-Collaborative-Projectional-Ogborn-Beverley/c6b5d34575d6230dfd8751ca4af8e5f6e44d916b
https://zenodo.org/record/6456380
https://zenodo.org/record/6456380

	Introduction
	Porting from Haskell
	Representing Patterns
	Making Patterns
	Pattern Example
	Technical requirements
	Acknowledgments
	References

