
Strudel

Felix Roos
Affiliation?
x@x.com

Alex McLean
Then Try This

Sheffield/Penryn
alex@slab.org

ABSTRACT
Abstract goes here (find me in the latex template)

1. INTRODUCTION
This paper introduces Strudel, an alternative implemen-

tation of the TidalCycles live coding system, using the
JavaScript programming language.

2. BACKGROUND
General motivations / related work. Reference vortex pa-

per and summarise its background.
The reimplementation of TidalCycles in Python (cite

TidalVortex) showed that it is possible to translate pure
functional reactive programming ideas to a multi paradigm
language. It proved to be a stepping stone to move to
other multi-paradigm languages, like JavaScript. A signif-
icant part of of the Python codebase could be ported to
JavaScript by syntactical adjustments.

3. INTRODUCING TIDALSTRUDEL
(do we want to call it TidalStrudel once, and Strudel

for short from then on as with vortex? Or just stick with
Strudel? Should we start calling TidalCycles just Cycles??
froos: I think TidalStrudel sounds a bit weird, but we can
stick to the TidalX naming scheme if thats important.
For me, StrudelCycles sounds better, because it has 3/4
phonems in common with TidalCycles)

• Motivating musical example

4. TIDAL PATTERNS
(should we explain shortly what tidal patterns do in gen-

eral here?)
The essence of TidalCycles are Patterns. Patterns are

abstract entities that represent flows of time. Taking a time
span as its input, a Pattern can output a set of events that
happen within that time span. It depends on the structure
of the Pattern where the events are placed. From now on,
this process of generating events from a time span will be
called querying. Example:

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2022, December 6–8, 2022, Cannes, France.

© 2022 Copyright held by the owner/author(s).

const pattern = sequence(c3, [e3, g3]);
const events = pattern.query(0, 1);
console.log(events.map(e => e.show()))

In this example, we create a pattern using the sequence
function and query it for the timespan from 0 to 1. Those
numbers represent units of time called cycles. The length of
one cycle defaults to one second, but could be any number
of seconds. The console output looks like this:

(0 -> 1/2 c3)
(1/2 -> 3/4 e3)
(3/2 -> 1 g3)

In this output, each line represents one event. The two
fractions represent the begin and end time of the event, fol-
lowed by its value. In this case, the events are placed in
sequential order, where c3 takes the first half, and e3 and
g3 together take the second half. This temporal placement
is the result of the sequence function, which divides its ar-
guments equally over one cycle. If an argument is an array,
the same rule applies to that part of the sequence. In our
example e3 and g3 are divided equally over the second half
of the whole sequence.

5. MINI NOTATION
In this example, the Pattern is created using the mini

function, which parses Tidals Mini Notation. The Mini No-
tation is a Domain Specific Language (DSL) that allows ex-
pressing rhythms in a short mannger.

• Some comparisons of -Strudel with -Vortex and -Cycles
code?

(the following examples are from vortex paper, with added
js versions)

5.1 1

sound "bd ~ [sd cp]"

sound("bd", silence, ["sd", "cp"])

sound("bd ~ [sd cp]")

without mini notation:

sound $ cat
[pure "bd", silence,
cat(pure "sd", pure "cp")]

sound('bd', silence, cat('sd', 'cp'))



5.2 2

sound "bd ~ <sd cp>"

sound("bd", silence, slowcat("sd", "cp"))

sound("bd ~ <sd cp>")
// sound('bd', silence, slowcat('sd', 'cp'))

5.3 3

sound "bd {cp sd, lt mt ht}"

sound("bd", pm(["cp", "sd"], ["lt", "mt", "ht"]))

?

5.4 4

sound "bd {cp sd, [lt mt,bd bd bd] ht}"

sound("bd", pm(["cp", "sd"],
[pr(["lt", "mt"],
["bd", "bd", "bd"]
),
"ht" ]))

??

5.5 5

sound "bd sd cp" # speed "1 2"

sound("bd", "sd", "cp") >> speed (1, 2)

sound("bd sd cp").speed("1 2")

(operator overloading like in vortex?)

5.6 6

rev $ sound "bd sd"

rev(sound("bd", "sd"))
sound("bd", "sd").rev()

rev(sound("bd sd"))
sound("bd sd").rev()

5.7 7

jux rev $ every 3 (fast 2) $ sound "bd sd"

jux(rev, every(3, fast(2), sound("bd", "sd")))
sound("bd","sd").every(3, fast(2)).jux(rev)

jux(rev, every(3, fast(2), sound("bd sd")))
sound("bd sd").every(3, fast(2)).jux(rev)

(partial application)

5.8 8

n ("1 2 3" + "4 5") # sound "drum"

n (sequence(1,2,3) + sequence(4,5)) >> sound "drum"

n("1 2 3".add("4 5")).sound("drum")
n("5 [6 7] 8").sound("drum")

(operator overloading?)

5.9 9

speed("1 2 3" + sine)

speed(sequence(1,2,3) + sine)

speed("1 2 3".add(sine))
"c3*4".add(sine.mul(12).slow(8)).pianoroll()

5.10 10

• Mininotation

6. STRUDEL/WEB SPECIFICS
Some discussion about whether strudel is really a port

of TidalCycles, or whether javascript affordances mean its
going its own way..

• Recursive Scheduling: calling itself in the future
• Optimizing Syntax for minimal keystrokes / readabil-

ity: AST Hacking via shift-ast pseudo variables

– Handling mininotation - double quoted and tem-
plate strings to mini calls

– Operator overloading

• Fixing inconsistencies (e.g. with stut/echo) adding
source locations

• Dynamic HUD: Highlighting + drawing
• Translation of Tidal concepts to Javascript - different

constraints, affordances, aesthetics
• Dynamic Harmonic Programming?
• emulating musician thought patterns
• microtonal features? webserial

6.1 User Code Transpilation
(compare user input vs shifted output)

6.1.1 double quotes -> mini calls

"c3 e3" // or `c3 e3`

mini("c3 e3")

6.1.2 operator overloading

cat(c3, e3) * 4

reify(cat("c3","e3")).fast(4)

(reify is redundant here, the shapeshifter could have an
additional check)

(TBD: ability to multiply mini notation strings)

6.1.3 pseudo variables

cat(c3, r, e3)

cat("c3",silence,"e3")



6.1.4 locations

cat(c3, e3)

cat(
reify("c3").withLocation([1,4,4],[1,6,6]),
reify("e3").withLocation([1,8,8],[1,10,10])

)

mini("c3 e3")

with locations:

// "c3 e3"
mini("c3 e3").withMiniLocation([1,0,0],[1,7,7])

(talk about mini adding locations of mini notation parser)

6.1.5 top level await

const p = (await piano()).toDestination()
cat(c3).tone(p)

(async()=>{
const p = (await piano()).toDestination();
return cat("c3").tone(p);

})()

7. MUSICAL EXAMPLES

8. ONGOING WORK/FUTURE AIMS

• WASM Sound Backend
• OSC -> Supercollider
• mininotation as the regex of metre

That Roberts (2016) are excellent, I reference their work
at least twice per sentence (Roberts 2016, 3). Another ref-
erence (Alternate Timelines for TidalCycles 2021).

"1 2 3"

9. REFERENCES

• gibber
• krill
• glicol

Alternate Timelines for TidalCycles. 2021. Valdivia, Chile.
https://zenodo.org/record/5788732.

Roberts, Charles. 2016. Code as Information and Code as
Spectacle. International Journal of Performance Arts
and Digital Media 12 (2): 2016. https://doi.org/10.
1080/14794713.2016.1227602.

https://zenodo.org/record/5788732
https://doi.org/10.1080/14794713.2016.1227602
https://doi.org/10.1080/14794713.2016.1227602

	Introduction
	Background
	Introducing TidalStrudel
	Tidal patterns
	Mini Notation
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Strudel/web specifics
	User Code Transpilation
	double quotes -> mini calls
	operator overloading
	pseudo variables
	locations
	top level await


	Musical examples
	Ongoing work/future aims
	References

