
Strudel: Algorithmic Patterns for the Web

Felix Roos
Lembach, France

flix91@gmail.com

Alex McLean
Then Try This

Sheffield/Penryn, UK
alex@slab.org

1. INTRODUCTION
This paper introduces Strudel (or sometimes StrudelCy-

cles), an alternative implementation of the Tidal (or Tidal-
Cycles) live coding system, using the JavaScript program-
ming language. Strudel is an attempt to make live cod-
ing more accessible, by creating a system that runs entirely
in the browser, while opening Tidals approach to algorith-
mic patterns (Algorithmic Pattern 2020) up to modern au-
dio/visual web technologies. The Strudel REPL is a live
code editor dedicated to manipulating strudel patterns while
they play, with builtin visual feedback. While Strudel is
written in JavaScript, the API is optimized for simplicity
and readability by applying code transformations on the
syntax tree level, allowing language operations that would
otherwise be impossible. The application supports multi-
ple ways to output sound, including Tone.js, Web Audio
nodes, OSC (Open Sound Control) messages, Web Serial
and Web MIDI. The project is split into multiple packages,
allowing granular reuse in other applications. Apart from
TidalCycles, Strudel draws inspiration from prior projects
like TidalVortex (TidalVortex Zero 2022), Gibber (Charlie
and Joann 2012), Estuary (Ogborn and Beverley 2017) and
Feedforward (Feedforward 2020).

2. PORTING FROM HASKELL
The original Tidal is implemented as a domain specific

language (DSL), embedded in the Haskell pure functional
programming language, taking advantage of Haskells terse
syntax and advanced, strong type system. Javascript on
the other hand, is a multi-paradigm programming language,
with a dynamic type system. Because Tidal leans heavily
on many of Haskells more unique features, it was not al-
ways clear that it could meaningfully be ported to a multi-
paradigm scripting language. However, this already proved
to be the case with an earlier port to Python [TidalVortex;
TidalVortex Zero (2022)], and we have now successfully im-
plemented Tidals pure functional representation of patterns
in Strudel, including partial application, and functor, ap-
plicative and monad structures. Over the past few months
since the project started in January 2022, a large part of
Tidals functionality has already been ported, including its

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2022, July 6–8, 2022, Cannes, France.

© 2022 Copyright held by the owner/author(s).

mini-notation for polymetric sequences, and a large part of
its library of pattern manipulations. The result is a terse
and highly composable system, where just about everything
is a pattern, that may be transformed and combined with
other patterns in a myriad of ways.

3. REPRESENTING PATTERNS
Patterns are the essence of Tidal. Its patterns are abstract

entities that represent flows of time as functions, adapting
a technique called pure functional reactive programming.
Taking a time span as its input, a Pattern can output a set
of events that happen within that time span. It depends on
the structure of the Pattern how the events are located in
time. From now on, this process of generating events from
a time span will be called querying. Example:

const pattern = sequence(c3, [e3, g3]);
const events = pattern.query(0, 1);
console.log(events.map(e => e.show()))

In this example, we create a pattern using the sequence
function and query it for the time span from 0 to 1. Those
numbers represent units of time called cycles. The length of
one cycle depends on the tempo, which defaults to one cycle
per second. The resulting events are:

[{ value: 'c3', begin: 0, end: 1/2 },
{ value: 'e3', begin: 1/2, end: 3/4 },
{ value: 'g3', begin: 3/4, end: 1 }]

Each event has a value, a begin time and an end time,
where time is represented as a fraction. In the above case,
the events are placed in sequential order, where c3 takes the
first half, and e3 and g3 together take the second half. This
temporal placement is the result of the sequence function,
which divides its arguments equally over one cycle. If an
argument is an array, the same rule applies to that part of
the cycle. In the example, e3 and g3 are divided equally
over the second half of the whole cycle.

In the REPL, the user only has to type in the pattern
itself, the querying will be handled by the scheduler. The
scheduler will repeatedly query the pattern for events, which
then will be used for playback.

4. MAKING PATTERNS
In practice, the end-user live coder will not deal with con-

structing patterns directly, but will rather build patterns
using Strudels extensive combinator library to create, com-
bine and transform patterns.



The live coder may use the sequence function as already
seen above, or more often the mini-notation for even terser
notation of rhythmic sequences. Such sequences are often
treated only a starting point for manipulation, where they
then are undergo pattern transformations such as repetition,
symmetry, interference or randomisation, potentially at mul-
tiple timescales. Because Strudel patterns are represented as
pure functions of time rather than as data structures, very
long and complex generative results can be represented and
manipulated without having to store the resulting sequences
in memory.

5. PATTERN EXAMPLE
The following example showcases how patterns can be uti-

lized to create musical complexity from simple parts, using
repetition and interference:

"<0 2 [4 6](3,4,1) 3*2>".scale('D minor')
.off(1/4, scaleTranspose(2))
.off(1/2, scaleTranspose(6))
.legato(.5)
.echo(4, 1/8, .5)
.tone((await piano()).chain(out()))
.pianoroll()

The pattern starts with a rhythm of numbers in mini no-
tation, which are interpreted inside the scale of D minor.
Without the scale function, the first line can be expressed
as:

"<d3 f3 [a3 c3](3, 4, 1) g3*2>"

This line could also be expressed without mini notation:

slowcat(d3, f3, [a3, c3].euclid(3, 4, 1), g3.fast(2))

Here is a short description of all the functions used:

• slowcat: play elements sequentially, where each lasts
one cycle

• brackets: elements inside brackets are divided equally
over the time of their parent

• euclid(p, s, o): place p pulses evenly over s steps, with
offset o (Toussaint 2005)

• fast(n): speed up by n. g3.fast(2) will play g3 two
times.

• off(n, f): copy each event, offset it by n cycles and
apply function f

• legato(n): multiply duration of event with n
• echo(t, n, v): copy each event t times, with n cycles in

between each copy, decreasing velocity by v
• tone(instrument): play back each event with the given

Tone.js instrument
• pianoroll(): visualize events as midi notes in a pianoroll

6. FUTURE OUTLOOK
The project is still young, with many features on the hori-

zon. As general guiding principles, Strudel aims to be

1. accessible
2. as compatible as possible with Tidal
3. modular and extensible

The main accessibility advantage over Tidal is the zero in-
stall browser environment. While OSC output to SuperCol-
lider is possible with Strudel, it requires the user to install
SuperCollider with a custom setup script, which is not triv-
ial. Without OSC output, Strudel is able to output sound in-
side the browser via Tone.js, which is a major limiting factor,
both in terms of available features and runtime performance.
For the future, it is planned to integrate alternative sound
engines, with possible candidates being like glicol (WAC Gli-
col: A Graph-Oriented Live Coding Language Developed
with Rust, WebAssembly and AudioWorklet n.d.) or faust
(WAC FAUST Online IDE: Dynamically Compile and Pub-
lish FAUST Code as WebAudio Plugins n.d.). To improve
compatibility with Tidal, more Tidal functions are planned
to be ported, as well as full compatibility with Tidals Su-
perDirt synth. Besides sound output, other ways to render
events will be explored, such as graphical, serial or kinetic
output.

7. LINKS
The Strudel REPL is available at https://strudel.tidalcycles.org

(Strudel REPL n.d.), including an interactive tutorial. The
repository is at <github.com/tidalcycles/strudel>, all the
code is open source under the GPL-3.0 License.

8. TECHNICAL REQUIREMENTS

• Space for one laptop + small audio interface (20 cm x
20cm), with mains power.

• Stereo sound system, either placed behind presenter
(for direct monitoring) or with additional stereo mon-
itors.

• Audio from audio interface: stereo pair 6,3mm jack
outputs (balanced)

• Projector / screen (HDMI.)

9. ACKNOWLEDGMENTS
Thanks to the Strudel and wider Tidal, live coding, we-

baudio and free/open source software communities for in-
spiration and support. Alex McLeans work on this project
is supported by a UKRI Future Leaders Fellowship [grant
number MR/V025260/1].

10. REFERENCES
Algorithmic Pattern. 2020. Birmingham UK. https:

//zenodo.org/record/4299661.
Charlie, Roberts, and Kuchera-Morin Joann. 2012. GIB-

BER: LIVE CODING AUDIO IN THE BROWSER.
International Computer Music Conference Proceed-
ings 2012. https://quod.lib.umich.edu/i/icmc/bbp2372.
2012.011/2/%E2%80%93gibber-live-coding-audio-in-the-browser?
page=root;size=150;view=text.

Feedforward. 2020. Birmingham. https://zenodo.org/
record/6353969.

Ogborn, David, and J. Beverley. 2017. Estuary:
Browser-Based Collaborative Projectional Live Cod-
ing of Musical Patterns. Www.semanticscholar.org.
https://www.semanticscholar.org/paper/Estuary%
3A-Browser-based-Collaborative-Projectional-Ogborn-Beverley/
c6b5d34575d6230dfd8751ca4af8e5f6e44d916b.

Strudel REPL. n.d. Strudel.tidalcycles.org. Accessed April
24, 2022. https://strudel.tidalcycles.org/.

https://strudel.tidalcycles.org
https://strudel.tidalcycles.org
https://zenodo.org/record/4299661
https://zenodo.org/record/4299661
https://quod.lib.umich.edu/i/icmc/bbp2372.2012.011/2/%E2%80%93gibber-live-coding-audio-in-the-browser?page=root;size=150;view=text
https://quod.lib.umich.edu/i/icmc/bbp2372.2012.011/2/%E2%80%93gibber-live-coding-audio-in-the-browser?page=root;size=150;view=text
https://quod.lib.umich.edu/i/icmc/bbp2372.2012.011/2/%E2%80%93gibber-live-coding-audio-in-the-browser?page=root;size=150;view=text
https://zenodo.org/record/6353969
https://zenodo.org/record/6353969
https://www.semanticscholar.org/paper/Estuary%3A-Browser-based-Collaborative-Projectional-Ogborn-Beverley/c6b5d34575d6230dfd8751ca4af8e5f6e44d916b
https://www.semanticscholar.org/paper/Estuary%3A-Browser-based-Collaborative-Projectional-Ogborn-Beverley/c6b5d34575d6230dfd8751ca4af8e5f6e44d916b
https://www.semanticscholar.org/paper/Estuary%3A-Browser-based-Collaborative-Projectional-Ogborn-Beverley/c6b5d34575d6230dfd8751ca4af8e5f6e44d916b
https://strudel.tidalcycles.org/


TidalVortex Zero. 2022. Limerick, Ireland. https://zenodo.
org/record/6456380.

Toussaint, Godfried. 2005. The Euclidean Algorithm
Generates Traditional Musical Rhythms. In In Proceed-
ings of BRIDGES: Mathematical Connections in Art,
Music and Science, 4756. https://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.72.1340.

WAC FAUST Online IDE: Dynamically Compile
and Publish FAUST Code as WebAudio Plugins.
n.d. Webaudioconf.com. Accessed April 24, 2022.
https://webaudioconf.com/posts/2019 38/.

WAC Glicol: A Graph-Oriented Live Coding Language
Developed with Rust, WebAssembly and AudioWorklet.
n.d. Webaudioconf.com. Accessed April 24, 2022.
https://webaudioconf.com/posts/2021 8/.

https://zenodo.org/record/6456380
https://zenodo.org/record/6456380
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.1340
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.1340
https://webaudioconf.com/posts/2019_38/
https://webaudioconf.com/posts/2021_8/

	Introduction
	Porting from Haskell
	Representing Patterns
	Making Patterns
	Pattern Example
	Future Outlook
	Links
	Technical requirements
	Acknowledgments
	References

