/* mini.test.mjs - Copyright (C) 2022 Strudel contributors - see This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see . */ import { mini } from '../mini.mjs'; import '@strudel.cycles/core/euclid.mjs'; import { describe, expect, it } from 'vitest'; describe('mini', () => { const minV = (v) => mini(v)._firstCycleValues; const minS = (v) => mini(v)._showFirstCycle; it('supports single elements', () => { expect(minV('a')).toEqual(['a']); }); it('supports rest', () => { expect(minV('~')).toEqual([]); }); it('supports cat', () => { expect(minS('a b')).toEqual(['a: 0 - 1/2', 'b: 1/2 - 1']); expect(minS('a b c')).toEqual(['a: 0 - 1/3', 'b: 1/3 - 2/3', 'c: 2/3 - 1']); }); it('supports slowcat', () => { expect(minV('')).toEqual(['a']); }); it('supports division', () => { expect(minS('a/2')).toEqual(['a: 0 - 2']); expect(minS('[c3 d3]/2')).toEqual(['c3: 0 - 1']); }); it('supports multiplication', () => { expect(minS('c3*2')).toEqual(['c3: 0 - 1/2', 'c3: 1/2 - 1']); expect(minV('[c3 d3]*2')).toEqual(['c3', 'd3', 'c3', 'd3']); }); it('supports brackets', () => { expect(minS('c3 [d3 e3]')).toEqual(['c3: 0 - 1/2', 'd3: 1/2 - 3/4', 'e3: 3/4 - 1']); expect(minS('c3 [d3 [e3 f3]]')).toEqual(['c3: 0 - 1/2', 'd3: 1/2 - 3/4', 'e3: 3/4 - 7/8', 'f3: 7/8 - 1']); }); it('supports commas', () => { expect(minS('c3,e3,g3')).toEqual(['c3: 0 - 1', 'e3: 0 - 1', 'g3: 0 - 1']); expect(minS('[c3,e3,g3] f3')).toEqual(['c3: 0 - 1/2', 'e3: 0 - 1/2', 'g3: 0 - 1/2', 'f3: 1/2 - 1']); }); it('supports elongation', () => { expect(minS('a@3 b')).toEqual(['a: 0 - 3/4', 'b: 3/4 - 1']); expect(minS('a@2 b@3')).toEqual(['a: 0 - 2/5', 'b: 2/5 - 1']); }); it('supports replication', () => { expect(minS('a!3 b')).toEqual(['a: 0 - 1/4', 'a: 1/4 - 1/2', 'a: 1/2 - 3/4', 'b: 3/4 - 1']); }); it('supports euclidean rhythms', () => { expect(minS('a(3, 8)')).toEqual(['a: 0 - 1/8', 'a: 3/8 - 1/2', 'a: 3/4 - 7/8']); }); it('supports the ? operator', () => { expect( mini('a?') .queryArc(0, 20) .map((hap) => hap.whole.begin), ).toEqual( mini('a') .degradeBy(0.5) .queryArc(0, 20) .map((hap) => hap.whole.begin), ); }); // testing things that involve pseudo-randomness, so there's a probability we could fail by chance. // these next few tests work with the current PRNG, and are intended to succeed with p > 0.99 even if the PRNG changes // (as long as the PRNG has a relatively-uniform distribution of values) it('supports degradeBy with default of 50%', () => { const haps = mini('a?').queryArc(0, 1000); expect(459 <= haps.length && haps.length <= 541).toBe(true); // 'Number of elements did not fall in 99% confidence interval for binomial with p=0.5', }); it('supports degradeBy with an argument', () => { const haps = mini('a?0.8').queryArc(0, 1000); expect(haps.length > 0).toBe(true); // 'Should have had at least one element when degradeBy was set at 0.8'); expect(haps.length < 230).toBe(true); // 'Had too many cycles remaining after degradeBy 0.8'); }); it('supports the random choice operator ("|") with nesting', () => { const numCycles = 900; const haps = mini('a | [b | c] | [d | e | f]').queryArc(0, numCycles); // Should have about 1/3 a, 1/6 each of b | c, and 1/9 each of d | e | f. // Evaluating this distribution with a chi-squared test. // Note: this just evaluates the overall distribution, not things like correlation/runs of values const observed = haps.reduce((acc, hap) => { acc[hap.value] = (acc[hap.value] || 0) + 1; return acc; }, {}); const expected = { a: numCycles / 3, b: numCycles / 6, c: numCycles / 6, d: numCycles / 9, e: numCycles / 9, f: numCycles / 9, }; let chisq = -numCycles; for (let k in expected) { chisq += (observed[k] * observed[k]) / expected[k]; } // 15.086 is the chisq for 5 degrees of freedom at 99%, so for 99% of uniformly-distributed // PRNG, this test should succeed expect(chisq <= 15.086).toBe(true); // assert(chisq <= 15.086, chisq + ' was expected to be less than 15.086 under chi-squared test'); }); });