mirror of
https://github.com/eliasstepanik/core.git
synced 2026-01-11 17:38:27 +00:00
* feat: remove trigger and run base on bullmq * fix: telemetry and trigger deploymen * feat: add Ollama container and update ingestion status for unchanged documents * feat: add logger to bullmq workers * 1. Remove chat and deep-search from trigger 2. Add ai/sdk for chat UI 3. Added a better model manager * refactor: simplify clustered graph query and add stop conditions for AI responses * fix: streaming * fix: docker docs --------- Co-authored-by: Manoj <saimanoj58@gmail.com>
212 lines
6.0 KiB
TypeScript
212 lines
6.0 KiB
TypeScript
import { type CoreMessage, embed, generateText, streamText } from "ai";
|
|
import { openai } from "@ai-sdk/openai";
|
|
import { logger } from "~/services/logger.service";
|
|
|
|
import { createOllama } from "ollama-ai-provider-v2";
|
|
import { anthropic } from "@ai-sdk/anthropic";
|
|
import { google } from "@ai-sdk/google";
|
|
|
|
export type ModelComplexity = "high" | "low";
|
|
|
|
/**
|
|
* Get the appropriate model for a given complexity level.
|
|
* HIGH complexity uses the configured MODEL.
|
|
* LOW complexity automatically downgrades to cheaper variants if possible.
|
|
*/
|
|
export function getModelForTask(complexity: ModelComplexity = "high"): string {
|
|
const baseModel = process.env.MODEL || "gpt-4.1-2025-04-14";
|
|
|
|
// HIGH complexity - always use the configured model
|
|
if (complexity === "high") {
|
|
return baseModel;
|
|
}
|
|
|
|
// LOW complexity - automatically downgrade expensive models to cheaper variants
|
|
// If already using a cheap model, keep it
|
|
const downgrades: Record<string, string> = {
|
|
// OpenAI downgrades
|
|
"gpt-5-2025-08-07": "gpt-5-mini-2025-08-07",
|
|
"gpt-4.1-2025-04-14": "gpt-4.1-mini-2025-04-14",
|
|
|
|
// Anthropic downgrades
|
|
"claude-sonnet-4-5": "claude-3-5-haiku-20241022",
|
|
"claude-3-7-sonnet-20250219": "claude-3-5-haiku-20241022",
|
|
"claude-3-opus-20240229": "claude-3-5-haiku-20241022",
|
|
|
|
// Google downgrades
|
|
"gemini-2.5-pro-preview-03-25": "gemini-2.5-flash-preview-04-17",
|
|
"gemini-2.0-flash": "gemini-2.0-flash-lite",
|
|
|
|
// AWS Bedrock downgrades (keep same model - already cost-optimized)
|
|
"us.amazon.nova-premier-v1:0": "us.amazon.nova-premier-v1:0",
|
|
};
|
|
|
|
return downgrades[baseModel] || baseModel;
|
|
}
|
|
|
|
export const getModel = (takeModel?: string) => {
|
|
let model = takeModel;
|
|
|
|
const anthropicKey = process.env.ANTHROPIC_API_KEY;
|
|
const googleKey = process.env.GOOGLE_GENERATIVE_AI_API_KEY;
|
|
const openaiKey = process.env.OPENAI_API_KEY;
|
|
let ollamaUrl = process.env.OLLAMA_URL;
|
|
model = model || process.env.MODEL || "gpt-4.1-2025-04-14";
|
|
|
|
let modelInstance;
|
|
let modelTemperature = Number(process.env.MODEL_TEMPERATURE) || 1;
|
|
ollamaUrl = undefined;
|
|
|
|
// First check if Ollama URL exists and use Ollama
|
|
if (ollamaUrl) {
|
|
const ollama = createOllama({
|
|
baseURL: ollamaUrl,
|
|
});
|
|
modelInstance = ollama(model || "llama2"); // Default to llama2 if no model specified
|
|
} else {
|
|
// If no Ollama, check other models
|
|
|
|
if (model.includes("claude")) {
|
|
if (!anthropicKey) {
|
|
throw new Error("No Anthropic API key found. Set ANTHROPIC_API_KEY");
|
|
}
|
|
modelInstance = anthropic(model);
|
|
modelTemperature = 0.5;
|
|
} else if (model.includes("gemini")) {
|
|
if (!googleKey) {
|
|
throw new Error("No Google API key found. Set GOOGLE_API_KEY");
|
|
}
|
|
modelInstance = google(model);
|
|
} else {
|
|
if (!openaiKey) {
|
|
throw new Error("No OpenAI API key found. Set OPENAI_API_KEY");
|
|
}
|
|
modelInstance = openai(model);
|
|
}
|
|
|
|
return modelInstance;
|
|
}
|
|
};
|
|
|
|
export interface TokenUsage {
|
|
promptTokens?: number;
|
|
completionTokens?: number;
|
|
totalTokens?: number;
|
|
}
|
|
|
|
export async function makeModelCall(
|
|
stream: boolean,
|
|
messages: CoreMessage[],
|
|
onFinish: (text: string, model: string, usage?: TokenUsage) => void,
|
|
options?: any,
|
|
complexity: ModelComplexity = "high",
|
|
) {
|
|
let model = getModelForTask(complexity);
|
|
logger.info(`complexity: ${complexity}, model: ${model}`);
|
|
|
|
const modelInstance = getModel(model);
|
|
const generateTextOptions: any = {};
|
|
|
|
if (!modelInstance) {
|
|
throw new Error(`Unsupported model type: ${model}`);
|
|
}
|
|
|
|
if (stream) {
|
|
return streamText({
|
|
model: modelInstance,
|
|
messages,
|
|
...options,
|
|
...generateTextOptions,
|
|
onFinish: async ({ text, usage }) => {
|
|
const tokenUsage = usage
|
|
? {
|
|
promptTokens: usage.inputTokens,
|
|
completionTokens: usage.outputTokens,
|
|
totalTokens: usage.totalTokens,
|
|
}
|
|
: undefined;
|
|
|
|
if (tokenUsage) {
|
|
logger.log(
|
|
`[${complexity.toUpperCase()}] ${model} - Tokens: ${tokenUsage.totalTokens} (prompt: ${tokenUsage.promptTokens}, completion: ${tokenUsage.completionTokens})`,
|
|
);
|
|
}
|
|
|
|
onFinish(text, model, tokenUsage);
|
|
},
|
|
});
|
|
}
|
|
|
|
const { text, usage } = await generateText({
|
|
model: modelInstance,
|
|
messages,
|
|
...generateTextOptions,
|
|
});
|
|
|
|
const tokenUsage = usage
|
|
? {
|
|
promptTokens: usage.inputTokens,
|
|
completionTokens: usage.outputTokens,
|
|
totalTokens: usage.totalTokens,
|
|
}
|
|
: undefined;
|
|
|
|
if (tokenUsage) {
|
|
logger.log(
|
|
`[${complexity.toUpperCase()}] ${model} - Tokens: ${tokenUsage.totalTokens} (prompt: ${tokenUsage.promptTokens}, completion: ${tokenUsage.completionTokens})`,
|
|
);
|
|
}
|
|
|
|
onFinish(text, model, tokenUsage);
|
|
|
|
return text;
|
|
}
|
|
|
|
/**
|
|
* Determines if a given model is proprietary (OpenAI, Anthropic, Google, Grok)
|
|
* or open source (accessed via Bedrock, Ollama, etc.)
|
|
*/
|
|
export function isProprietaryModel(
|
|
modelName?: string,
|
|
complexity: ModelComplexity = "high",
|
|
): boolean {
|
|
const model = modelName || getModelForTask(complexity);
|
|
if (!model) return false;
|
|
|
|
// Proprietary model patterns
|
|
const proprietaryPatterns = [
|
|
/^gpt-/, // OpenAI models
|
|
/^claude-/, // Anthropic models
|
|
/^gemini-/, // Google models
|
|
/^grok-/, // xAI models
|
|
];
|
|
|
|
return proprietaryPatterns.some((pattern) => pattern.test(model));
|
|
}
|
|
|
|
export async function getEmbedding(text: string) {
|
|
const ollamaUrl = process.env.OLLAMA_URL;
|
|
|
|
// Default to using Ollama
|
|
const model = process.env.EMBEDDING_MODEL;
|
|
|
|
if (model === "text-embedding-3-small") {
|
|
// Use OpenAI embedding model when explicitly requested
|
|
const { embedding } = await embed({
|
|
model: openai.embedding("text-embedding-3-small"),
|
|
value: text,
|
|
});
|
|
return embedding;
|
|
}
|
|
|
|
const ollama = createOllama({
|
|
baseURL: ollamaUrl,
|
|
});
|
|
const { embedding } = await embed({
|
|
model: ollama.embedding(model as string),
|
|
value: text,
|
|
});
|
|
|
|
return embedding;
|
|
}
|