mirror of
https://github.com/eliasstepanik/core.git
synced 2026-01-12 04:18:28 +00:00
153 lines
3.8 KiB
TypeScript
153 lines
3.8 KiB
TypeScript
import {
|
|
type CoreMessage,
|
|
type LanguageModelV1,
|
|
embed,
|
|
generateText,
|
|
streamText,
|
|
} from "ai";
|
|
import { openai } from "@ai-sdk/openai";
|
|
import { logger } from "~/services/logger.service";
|
|
|
|
import { createOllama, type OllamaProvider } from "ollama-ai-provider";
|
|
import { anthropic } from "@ai-sdk/anthropic";
|
|
import { google } from "@ai-sdk/google";
|
|
import { createAmazonBedrock } from "@ai-sdk/amazon-bedrock";
|
|
import { fromNodeProviderChain } from "@aws-sdk/credential-providers";
|
|
|
|
export async function makeModelCall(
|
|
stream: boolean,
|
|
messages: CoreMessage[],
|
|
onFinish: (text: string, model: string) => void,
|
|
options?: any,
|
|
) {
|
|
let modelInstance: LanguageModelV1 | undefined;
|
|
let model = process.env.MODEL as any;
|
|
const ollamaUrl = process.env.OLLAMA_URL;
|
|
let ollama: OllamaProvider | undefined;
|
|
|
|
if (ollamaUrl) {
|
|
ollama = createOllama({
|
|
baseURL: ollamaUrl,
|
|
});
|
|
}
|
|
|
|
const bedrock = createAmazonBedrock({
|
|
region: process.env.AWS_REGION || 'us-east-1',
|
|
credentialProvider: fromNodeProviderChain(),
|
|
});
|
|
|
|
const generateTextOptions: any = {}
|
|
|
|
|
|
model = 'us.amazon.nova-premier-v1:0'
|
|
switch (model) {
|
|
case "gpt-4.1-2025-04-14":
|
|
case "gpt-4.1-mini-2025-04-14":
|
|
case "gpt-5-mini-2025-08-07":
|
|
case "gpt-5-2025-08-07":
|
|
case "gpt-4.1-nano-2025-04-14":
|
|
modelInstance = openai(model, { ...options });
|
|
generateTextOptions.temperature = 1
|
|
break;
|
|
|
|
case "claude-3-7-sonnet-20250219":
|
|
case "claude-3-opus-20240229":
|
|
case "claude-3-5-haiku-20241022":
|
|
modelInstance = anthropic(model, { ...options });
|
|
break;
|
|
|
|
case "gemini-2.5-flash-preview-04-17":
|
|
case "gemini-2.5-pro-preview-03-25":
|
|
case "gemini-2.0-flash":
|
|
case "gemini-2.0-flash-lite":
|
|
modelInstance = google(model, { ...options });
|
|
break;
|
|
|
|
case "us.meta.llama3-3-70b-instruct-v1:0":
|
|
case "us.deepseek.r1-v1:0":
|
|
case "qwen.qwen3-32b-v1:0":
|
|
case "openai.gpt-oss-120b-1:0":
|
|
case "us.mistral.pixtral-large-2502-v1:0":
|
|
case "us.amazon.nova-premier-v1:0":
|
|
modelInstance = bedrock(`${model}`);
|
|
break;
|
|
|
|
default:
|
|
if (ollama) {
|
|
modelInstance = ollama(model);
|
|
}
|
|
logger.warn(`Unsupported model type: ${model}`);
|
|
break;
|
|
}
|
|
|
|
if (!modelInstance) {
|
|
throw new Error(`Unsupported model type: ${model}`);
|
|
}
|
|
|
|
if (stream) {
|
|
return streamText({
|
|
model: modelInstance,
|
|
messages,
|
|
...generateTextOptions,
|
|
onFinish: async ({ text }) => {
|
|
onFinish(text, model);
|
|
},
|
|
});
|
|
}
|
|
|
|
const { text, response } = await generateText({
|
|
model: modelInstance,
|
|
messages,
|
|
...generateTextOptions,
|
|
});
|
|
|
|
onFinish(text, model);
|
|
|
|
return text;
|
|
}
|
|
|
|
/**
|
|
* Determines if the current model is proprietary (OpenAI, Anthropic, Google, Grok)
|
|
* or open source (accessed via Bedrock, Ollama, etc.)
|
|
*/
|
|
export function isProprietaryModel(): boolean {
|
|
const model = process.env.MODEL;
|
|
if (!model) return false;
|
|
|
|
// Proprietary model patterns
|
|
const proprietaryPatterns = [
|
|
/^gpt-/, // OpenAI models
|
|
/^claude-/, // Anthropic models
|
|
/^gemini-/, // Google models
|
|
/^grok-/, // xAI models
|
|
];
|
|
|
|
return proprietaryPatterns.some(pattern => pattern.test(model));
|
|
}
|
|
|
|
export async function getEmbedding(text: string) {
|
|
const ollamaUrl = process.env.OLLAMA_URL;
|
|
|
|
// Default to using Ollama
|
|
const model = process.env.EMBEDDING_MODEL;
|
|
|
|
if (model === "text-embedding-3-small") {
|
|
// Use OpenAI embedding model when explicitly requested
|
|
const { embedding } = await embed({
|
|
model: openai.embedding("text-embedding-3-small"),
|
|
value: text,
|
|
});
|
|
return embedding;
|
|
}
|
|
|
|
const ollama = createOllama({
|
|
baseURL: ollamaUrl,
|
|
});
|
|
const { embedding } = await embed({
|
|
model: ollama.embedding(model as string),
|
|
value: text,
|
|
});
|
|
|
|
return embedding;
|
|
}
|