Feat: deep search for extension and obsidian (#107)

* Feat: add deep search api

* Feat: deep search agent

* fix: stream utils for deep search

* fix: deep search

---------

Co-authored-by: Manoj <saimanoj58@gmail.com>
This commit is contained in:
Harshith Mullapudi 2025-10-15 23:51:21 +05:30 committed by GitHub
parent 7523c99660
commit 6732ff71c5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 851 additions and 3 deletions

View File

@ -0,0 +1,64 @@
import { z } from "zod";
import { json } from "@remix-run/node";
import { createActionApiRoute } from "~/services/routeBuilders/apiBuilder.server";
import { deepSearch } from "~/trigger/deep-search";
import { runs } from "@trigger.dev/sdk";
const DeepSearchBodySchema = z.object({
content: z.string().min(1, "Content is required"),
intentOverride: z.string().optional(),
stream: z.boolean().default(false),
metadata: z
.object({
source: z.enum(["chrome", "obsidian", "mcp"]).optional(),
url: z.string().optional(),
pageTitle: z.string().optional(),
})
.optional(),
});
const { action, loader } = createActionApiRoute(
{
body: DeepSearchBodySchema,
method: "POST",
allowJWT: true,
authorization: {
action: "search",
},
corsStrategy: "all",
},
async ({ body, authentication }) => {
let trigger;
if (!body.stream) {
trigger = await deepSearch.trigger({
content: body.content,
userId: authentication.userId,
stream: body.stream,
intentOverride: body.intentOverride,
metadata: body.metadata,
});
return json(trigger);
} else {
const runHandler = await deepSearch.trigger({
content: body.content,
userId: authentication.userId,
stream: body.stream,
intentOverride: body.intentOverride,
metadata: body.metadata,
});
for await (const run of runs.subscribeToRun(runHandler.id)) {
if (run.status === "COMPLETED") {
return json(run.output);
} else if (run.status === "FAILED") {
return json(run.error);
}
}
return json({ error: "Run failed" });
}
},
);
export { action, loader };

View File

@ -80,7 +80,7 @@ export class SearchService {
opts,
);
// // 3. Apply adaptive filtering based on score threshold and minimum count
// 3. Apply adaptive filtering based on score threshold and minimum count
const filteredResults = this.applyAdaptiveFiltering(rankedStatements, opts);
// 3. Return top results

View File

@ -59,9 +59,37 @@ export async function* processTag(
const hasStartTag = chunk.includes(startTag);
const hasClosingTag = chunk.includes("</");
// Check if we're currently accumulating a potential end tag
const accumulatingEndTag = state.message.endsWith("</") ||
state.message.match(/<\/[a-z_]*$/i);
if (hasClosingTag && !hasStartTag && !hasEndTag) {
// If chunk only has </ but not the full end tag, accumulate it
state.message += chunk;
} else if (accumulatingEndTag) {
// Continue accumulating if we're in the middle of a potential end tag
state.message += chunk;
// Check if we now have the complete end tag
if (state.message.includes(endTag)) {
// Process the complete message with end tag
const endIndex = state.message.indexOf(endTag);
const finalMessage = state.message.slice(0, endIndex).trim();
const messageToSend = finalMessage.slice(
finalMessage.indexOf(state.lastSent) + state.lastSent.length,
);
if (messageToSend) {
yield Message(
messageToSend,
states.chunk as AgentMessageType,
extraParams,
);
}
yield Message("", states.end as AgentMessageType, extraParams);
state.message = finalMessage;
state.messageEnded = true;
}
} else if (hasEndTag || (!hasEndTag && !hasClosingTag)) {
let currentMessage = comingFromStart
? state.message

View File

@ -0,0 +1,292 @@
import { type CoreMessage } from "ai";
import { logger } from "@trigger.dev/sdk/v3";
import { generate } from "./stream-utils";
import { processTag } from "../chat/stream-utils";
import { type AgentMessage, AgentMessageType, Message } from "../chat/types";
import { type TotalCost } from "../utils/types";
/**
* Run the deep search ReAct loop
* Async generator that yields AgentMessage objects for streaming
* Follows the exact same pattern as chat-utils.ts
*/
export async function* run(
initialMessages: CoreMessage[],
searchTool: any,
): AsyncGenerator<AgentMessage, any, any> {
let messages = [...initialMessages];
let completed = false;
let guardLoop = 0;
let searchCount = 0;
let totalEpisodesFound = 0;
const seenEpisodeIds = new Set<string>(); // Track unique episodes
const totalCost: TotalCost = {
inputTokens: 0,
outputTokens: 0,
cost: 0,
};
const tools = {
searchMemory: searchTool,
};
logger.info("Starting deep search ReAct loop");
try {
while (!completed && guardLoop < 50) {
logger.info(
`ReAct loop iteration ${guardLoop}, searches: ${searchCount}`,
);
// Call LLM with current message history
const response = generate(
messages,
(event) => {
const usage = event.usage;
totalCost.inputTokens += usage.promptTokens;
totalCost.outputTokens += usage.completionTokens;
},
tools,
);
let totalMessage = "";
const toolCalls: any[] = [];
// States for streaming final_response tags
const messageState = {
inTag: false,
message: "",
messageEnded: false,
lastSent: "",
};
// Process streaming response
for await (const chunk of response) {
if (typeof chunk === "object" && chunk.type === "tool-call") {
// Agent made a tool call
toolCalls.push(chunk);
logger.info(`Tool call: ${chunk.toolName}`);
} else if (typeof chunk === "string") {
totalMessage += chunk;
// Stream final_response tags using processTag
if (!messageState.messageEnded) {
yield* processTag(
messageState,
totalMessage,
chunk,
"<final_response>",
"</final_response>",
{
start: AgentMessageType.MESSAGE_START,
chunk: AgentMessageType.MESSAGE_CHUNK,
end: AgentMessageType.MESSAGE_END,
},
);
}
}
}
// Check for final response
if (totalMessage.includes("<final_response>")) {
const match = totalMessage.match(
/<final_response>(.*?)<\/final_response>/s,
);
if (match) {
// Accept synthesis - completed
completed = true;
logger.info(
`Final synthesis accepted after ${searchCount} searches, ${totalEpisodesFound} unique episodes found`,
);
break;
}
}
// Execute tool calls in parallel for better performance
if (toolCalls.length > 0) {
// Notify about all searches starting
for (const toolCall of toolCalls) {
logger.info(`Executing search: ${JSON.stringify(toolCall.args)}`);
yield Message("", AgentMessageType.SKILL_START);
yield Message(
`\nSearching memory: "${toolCall.args.query}"...\n`,
AgentMessageType.SKILL_CHUNK,
);
yield Message("", AgentMessageType.SKILL_END);
}
// Execute all searches in parallel
const searchPromises = toolCalls.map((toolCall) =>
searchTool.execute(toolCall.args).then((result: any) => ({
toolCall,
result,
})),
);
const searchResults = await Promise.all(searchPromises);
// Process results and add to message history
for (const { toolCall, result } of searchResults) {
searchCount++;
// Deduplicate episodes - track unique IDs
let uniqueNewEpisodes = 0;
if (result.episodes && Array.isArray(result.episodes)) {
for (const episode of result.episodes) {
const episodeId =
episode.id || episode._id || JSON.stringify(episode);
if (!seenEpisodeIds.has(episodeId)) {
seenEpisodeIds.add(episodeId);
uniqueNewEpisodes++;
}
}
}
const episodesInThisSearch = result.episodes?.length || 0;
totalEpisodesFound = seenEpisodeIds.size; // Use unique count
messages.push({
role: "assistant",
content: [
{
type: "tool-call",
toolCallId: toolCall.toolCallId,
toolName: toolCall.toolName,
args: toolCall.args,
},
],
});
// Add tool result to message history
messages.push({
role: "tool",
content: [
{
type: "tool-result",
toolName: toolCall.toolName,
toolCallId: toolCall.toolCallId,
result: result,
},
],
});
logger.info(
`Search ${searchCount} completed: ${episodesInThisSearch} episodes (${uniqueNewEpisodes} new, ${totalEpisodesFound} unique total)`,
);
}
// If found no episodes and haven't exhausted search attempts, require more searches
if (totalEpisodesFound === 0 && searchCount < 7) {
logger.info(
`Agent attempted synthesis with 0 unique episodes after ${searchCount} searches - requiring more attempts`,
);
yield Message("", AgentMessageType.SKILL_START);
yield Message(
`No relevant context found yet - trying different search angles...`,
AgentMessageType.SKILL_CHUNK,
);
yield Message("", AgentMessageType.SKILL_END);
messages.push({
role: "system",
content: `You have performed ${searchCount} searches but found 0 unique relevant episodes. Your queries may be too abstract or not matching the user's actual conversation topics.
Review your DECOMPOSITION:
- Are you using specific terms from the content?
- Try searching broader related topics the user might have discussed
- Try different terminology or related concepts
- Search for user's projects, work areas, or interests
Continue with different search strategies (you can search up to 7-10 times total).`,
});
guardLoop++;
continue;
}
// Soft nudging after all searches executed (awareness, not commands)
if (totalEpisodesFound >= 30 && searchCount >= 3) {
logger.info(
`Nudging: ${totalEpisodesFound} unique episodes found - suggesting synthesis consideration`,
);
messages.push({
role: "system",
content: `Context awareness: You have found ${totalEpisodesFound} unique episodes across ${searchCount} searches. This represents substantial context. Consider whether you have sufficient information for quality synthesis, or if additional search angles would meaningfully improve understanding.`,
});
} else if (totalEpisodesFound >= 15 && searchCount >= 5) {
logger.info(
`Nudging: ${totalEpisodesFound} unique episodes after ${searchCount} searches - suggesting evaluation`,
);
messages.push({
role: "system",
content: `Progress update: You have ${totalEpisodesFound} unique episodes from ${searchCount} searches. Evaluate whether you have covered the main angles from your decomposition, or if important aspects remain unexplored.`,
});
} else if (searchCount >= 7) {
logger.info(
`Nudging: ${searchCount} searches completed with ${totalEpisodesFound} unique episodes`,
);
messages.push({
role: "system",
content: `Search depth: You have performed ${searchCount} searches and found ${totalEpisodesFound} unique episodes. Consider whether additional searches would yield meaningfully different context, or if it's time to synthesize what you've discovered.`,
});
}
if (searchCount >= 10) {
logger.info(
`Reached maximum search limit (10), forcing synthesis with ${totalEpisodesFound} unique episodes`,
);
yield Message("", AgentMessageType.SKILL_START);
yield Message(
`Maximum searches reached - synthesizing results...`,
AgentMessageType.SKILL_CHUNK,
);
yield Message("", AgentMessageType.SKILL_END);
messages.push({
role: "system",
content: `You have performed 10 searches and found ${totalEpisodesFound} unique episodes. This is the maximum allowed. You MUST now provide your final synthesis wrapped in <final_response> tags based on what you've found.`,
});
}
}
// Safety check - if no tool calls and no final response, something went wrong
if (
toolCalls.length === 0 &&
!totalMessage.includes("<final_response>")
) {
logger.warn("Agent produced neither tool calls nor final response");
messages.push({
role: "system",
content:
"You must either use the searchMemory tool to search for more context, or provide your final synthesis wrapped in <final_response> tags.",
});
}
guardLoop++;
}
if (!completed) {
logger.warn(
`Loop ended without completion after ${guardLoop} iterations`,
);
yield Message("", AgentMessageType.MESSAGE_START);
yield Message(
"Deep search did not complete - maximum iterations reached.",
AgentMessageType.MESSAGE_CHUNK,
);
yield Message("", AgentMessageType.MESSAGE_END);
}
yield Message("Stream ended", AgentMessageType.STREAM_END);
} catch (error) {
logger.error(`Deep search error: ${error}`);
yield Message((error as Error).message, AgentMessageType.ERROR);
yield Message("Stream ended", AgentMessageType.STREAM_END);
}
}

View File

@ -0,0 +1,85 @@
import { metadata, task } from "@trigger.dev/sdk";
import { type CoreMessage } from "ai";
import { logger } from "@trigger.dev/sdk/v3";
import { nanoid } from "nanoid";
import {
deletePersonalAccessToken,
getOrCreatePersonalAccessToken,
} from "../utils/utils";
import { getReActPrompt } from "./prompt";
import { type DeepSearchPayload, type DeepSearchResponse } from "./types";
import { createSearchMemoryTool } from "./utils";
import { run } from "./deep-search-utils";
import { AgentMessageType } from "../chat/types";
export const deepSearch = task({
id: "deep-search",
maxDuration: 3000,
run: async (payload: DeepSearchPayload): Promise<DeepSearchResponse> => {
const { content, userId, stream, metadata: meta, intentOverride } = payload;
const randomKeyName = `deepSearch_${nanoid(10)}`;
// Get or create token for search API calls
const pat = await getOrCreatePersonalAccessToken({
name: randomKeyName,
userId: userId as string,
});
if (!pat?.token) {
throw new Error("Failed to create personal access token");
}
try {
// Create search tool that agent will use
const searchTool = createSearchMemoryTool(pat.token);
// Build initial messages with ReAct prompt
const initialMessages: CoreMessage[] = [
{
role: "system",
content: getReActPrompt(meta, intentOverride),
},
{
role: "user",
content: `CONTENT TO ANALYZE:\n${content}\n\nPlease search my memory for relevant context and synthesize what you find.`,
},
];
// Run the ReAct loop generator
const llmResponse = run(initialMessages, searchTool);
// Streaming mode: stream via metadata.stream like chat.ts does
// This makes all message types available to clients in real-time
const messageStream = await metadata.stream("messages", llmResponse);
let synthesis = "";
for await (const step of messageStream) {
// MESSAGE_CHUNK: Final synthesis - accumulate and stream
if (step.type === AgentMessageType.MESSAGE_CHUNK) {
synthesis += step.message;
}
// STREAM_END: Loop completed
if (step.type === AgentMessageType.STREAM_END) {
break;
}
}
await deletePersonalAccessToken(pat?.id);
// Clean up any remaining tags
synthesis = synthesis
.replace(/<final_response>/gi, "")
.replace(/<\/final_response>/gi, "")
.trim();
return { synthesis };
} catch (error) {
await deletePersonalAccessToken(pat?.id);
logger.error(`Deep search error: ${error}`);
throw error;
}
},
});

View File

@ -0,0 +1,148 @@
export function getReActPrompt(
metadata?: { source?: string; url?: string; pageTitle?: string },
intentOverride?: string
): string {
const contextHints = [];
if (metadata?.source === "chrome" && metadata?.url?.includes("mail.google.com")) {
contextHints.push("Content is from email - likely reading intent");
}
if (metadata?.source === "chrome" && metadata?.url?.includes("calendar.google.com")) {
contextHints.push("Content is from calendar - likely meeting prep intent");
}
if (metadata?.source === "chrome" && metadata?.url?.includes("docs.google.com")) {
contextHints.push("Content is from document editor - likely writing intent");
}
if (metadata?.source === "obsidian") {
contextHints.push("Content is from note editor - likely writing or research intent");
}
return `You are a memory research agent analyzing content to find relevant context.
YOUR PROCESS (ReAct Framework):
1. DECOMPOSE: First, break down the content into structured categories
Analyze the content and extract:
a) ENTITIES: Specific people, project names, tools, products mentioned
Example: "John Smith", "Phoenix API", "Redis", "mobile app"
b) TOPICS & CONCEPTS: Key subjects, themes, domains
Example: "authentication", "database design", "performance optimization"
c) TEMPORAL MARKERS: Time references, deadlines, events
Example: "last week's meeting", "Q2 launch", "yesterday's discussion"
d) ACTIONS & TASKS: What's being done, decided, or requested
Example: "implement feature", "review code", "make decision on"
e) USER INTENT: What is the user trying to accomplish?
${intentOverride ? `User specified: "${intentOverride}"` : "Infer from context: reading/writing/meeting prep/research/task tracking/review"}
2. FORM QUERIES: Create targeted search queries from your decomposition
Based on decomposition, form specific queries:
- Search for each entity by name (people, projects, tools)
- Search for topics the user has discussed before
- Search for related work or conversations in this domain
- Use the user's actual terminology, not generic concepts
EXAMPLE - Content: "Email from Sarah about the API redesign we discussed last week"
Decomposition:
- Entities: "Sarah", "API redesign"
- Topics: "API design", "redesign"
- Temporal: "last week"
- Actions: "discussed", "email communication"
- Intent: Reading (email) / meeting prep
Queries to form:
"Sarah" (find past conversations with Sarah)
"API redesign" or "API design" (find project discussions)
"last week" + "Sarah" (find recent context)
"meetings" or "discussions" (find related conversations)
Avoid: "email communication patterns", "API architecture philosophy"
(These are abstract - search what user actually discussed!)
3. SEARCH: Execute your queries using searchMemory tool
- Start with 2-3 core searches based on main entities/topics
- Make each search specific and targeted
- Use actual terms from the content, not rephrased concepts
4. OBSERVE: Evaluate search results
- Did you find relevant episodes? How many unique ones?
- What specific context emerged?
- What new entities/topics appeared in results?
- Are there gaps in understanding?
- Should you search more angles?
Note: Episode counts are automatically deduplicated across searches - overlapping episodes are only counted once.
5. REACT: Decide next action based on observations
STOPPING CRITERIA - Proceed to SYNTHESIZE if ANY of these are true:
- You found 20+ unique episodes across your searches ENOUGH CONTEXT
- You performed 5+ searches and found relevant episodes SUFFICIENT
- You performed 7+ searches regardless of results EXHAUSTED STRATEGIES
- You found strong relevant context from multiple angles COMPLETE
System nudges will provide awareness of your progress, but you decide when synthesis quality would be optimal.
If you found little/no context AND searched less than 7 times:
- Try different query angles from your decomposition
- Search broader related topics
- Search user's projects or work areas
- Try alternative terminology
DO NOT search endlessly - if you found relevant episodes, STOP and synthesize!
6. SYNTHESIZE: After gathering sufficient context, provide final answer
- Wrap your synthesis in <final_response> tags
- Present direct factual context from memory - no meta-commentary
- Write as if providing background context to an AI assistant
- Include: facts, decisions, preferences, patterns, timelines
- Note any gaps, contradictions, or evolution in thinking
- Keep it concise and actionable
- DO NOT use phrases like "Previous discussions on", "From conversations", "Past preferences indicate"
- DO NOT use conversational language like "you said" or "you mentioned"
- Present information as direct factual statements
FINAL RESPONSE FORMAT:
<final_response>
[Direct synthesized context - factual statements only]
Good examples:
- "The API redesign focuses on performance and scalability. Key decisions: moving to GraphQL, caching layer with Redis."
- "Project Phoenix launches Q2 2024. Main features: real-time sync, offline mode, collaborative editing."
- "Sarah leads the backend team. Recent work includes authentication refactor and database migration."
Bad examples:
"Previous discussions on the API revealed..."
"From past conversations, it appears that..."
"Past preferences indicate..."
"The user mentioned that..."
Just state the facts directly.
</final_response>
${contextHints.length > 0 ? `\nCONTEXT HINTS:\n${contextHints.join("\n")}` : ""}
CRITICAL REQUIREMENTS:
- ALWAYS start with DECOMPOSE step - extract entities, topics, temporal markers, actions
- Form specific queries from your decomposition - use user's actual terms
- Minimum 3 searches required
- Maximum 10 searches allowed - must synthesize after that
- STOP and synthesize when you hit stopping criteria (20+ episodes, 5+ searches with results, 7+ searches total)
- Each search should target different aspects from decomposition
- Present synthesis directly without meta-commentary
SEARCH QUALITY CHECKLIST:
Queries use specific terms from content (names, projects, exact phrases)
Searched multiple angles from decomposition (entities, topics, related areas)
Stop when you have enough unique context - don't search endlessly
Tried alternative terminology if initial searches found nothing
Avoid generic/abstract queries that don't match user's vocabulary
Don't stop at 3 searches if you found zero unique episodes
Don't keep searching when you already found 20+ unique episodes
}`
}

View File

@ -0,0 +1,68 @@
import { openai } from "@ai-sdk/openai";
import { logger } from "@trigger.dev/sdk/v3";
import {
type CoreMessage,
type LanguageModelV1,
streamText,
type ToolSet,
} from "ai";
/**
* Generate LLM responses with tool calling support
* Simplified version for deep-search use case - NO maxSteps for manual ReAct control
*/
export async function* generate(
messages: CoreMessage[],
onFinish?: (event: any) => void,
tools?: ToolSet,
model?: string,
): AsyncGenerator<
| string
| {
type: string;
toolName: string;
args?: any;
toolCallId?: string;
}
> {
const modelToUse = model || process.env.MODEL || "gpt-4.1-2025-04-14";
const modelInstance = openai(modelToUse) as LanguageModelV1;
logger.info(`Starting LLM generation with model: ${modelToUse}`);
try {
const { textStream, fullStream } = streamText({
model: modelInstance,
messages,
temperature: 1,
tools,
// NO maxSteps - we handle tool execution manually in the ReAct loop
toolCallStreaming: true,
onFinish,
});
// Yield text chunks
for await (const chunk of textStream) {
yield chunk;
}
// Yield tool calls
for await (const fullChunk of fullStream) {
if (fullChunk.type === "tool-call") {
yield {
type: "tool-call",
toolName: fullChunk.toolName,
toolCallId: fullChunk.toolCallId,
args: fullChunk.args,
};
}
if (fullChunk.type === "error") {
logger.error(`LLM error: ${JSON.stringify(fullChunk)}`);
}
}
} catch (error) {
logger.error(`LLM generation error: ${error}`);
throw error;
}
}

View File

@ -0,0 +1,20 @@
export interface DeepSearchPayload {
content: string;
userId: string;
stream: boolean;
intentOverride?: string;
metadata?: {
source?: "chrome" | "obsidian" | "mcp";
url?: string;
pageTitle?: string;
};
}
export interface DeepSearchResponse {
synthesis: string;
episodes?: Array<{
content: string;
createdAt: Date;
spaceIds: string[];
}>;
}

View File

@ -0,0 +1,64 @@
import { tool } from "ai";
import { z } from "zod";
import axios from "axios";
import { logger } from "@trigger.dev/sdk/v3";
export function createSearchMemoryTool(token: string) {
return tool({
description:
"Search the user's memory for relevant facts and episodes. Use this tool multiple times with different queries to gather comprehensive context.",
parameters: z.object({
query: z
.string()
.describe(
"Search query to find relevant information. Be specific: entity names, topics, concepts.",
),
}),
execute: async ({ query }) => {
try {
const response = await axios.post(
`${process.env.API_BASE_URL || "https://core.heysol.ai"}/api/v1/search`,
{ query },
{
headers: {
Authorization: `Bearer ${token}`,
},
},
);
const searchResult = response.data;
return {
facts: searchResult.facts || [],
episodes: searchResult.episodes || [],
summary: `Found ${searchResult.episodes?.length || 0} relevant memories`,
};
} catch (error) {
logger.error(`SearchMemory tool error: ${error}`);
return {
facts: [],
episodes: [],
summary: "No results found",
};
}
},
});
}
// Helper to extract unique episodes from tool calls
export function extractEpisodesFromToolCalls(toolCalls: any[]): any[] {
const episodes: any[] = [];
for (const call of toolCalls || []) {
if (call.toolName === "searchMemory" && call.result?.episodes) {
episodes.push(...call.result.episodes);
}
}
// Deduplicate by content + createdAt
const uniqueEpisodes = Array.from(
new Map(episodes.map((e) => [`${e.content}-${e.createdAt}`, e])).values(),
);
return uniqueEpisodes.slice(0, 10);
}

View File

@ -3,6 +3,7 @@ import { addToQueue } from "~/lib/ingest.server";
import { logger } from "~/services/logger.service";
import { SearchService } from "~/services/search.server";
import { SpaceService } from "~/services/space.server";
import { deepSearch } from "~/trigger/deep-search";
import { IntegrationLoader } from "./integration-loader";
const searchService = new SearchService();
@ -178,6 +179,27 @@ export const memoryTools = [
required: ["integrationSlug", "action"],
},
},
// {
// name: "memory_deep_search",
// description:
// "Search CORE memory with document context and get synthesized insights. Automatically analyzes content to infer intent (reading, writing, meeting prep, research, task tracking, etc.) and provides context-aware synthesis. USE THIS TOOL: When analyzing documents, emails, notes, or any substantial text content for relevant memories. HOW TO USE: Provide the full content text. The tool will decompose it, search for relevant memories, and synthesize findings based on inferred intent. Returns: Synthesized context summary and related episodes.",
// inputSchema: {
// type: "object",
// properties: {
// content: {
// type: "string",
// description:
// "Full document/text content to analyze and search against memory",
// },
// intentOverride: {
// type: "string",
// description:
// "Optional: Explicitly specify intent (e.g., 'meeting preparation', 'blog writing') instead of auto-detection",
// },
// },
// required: ["content"],
// },
// },
];
// Function to call memory tools based on toolName
@ -205,6 +227,8 @@ export async function callMemoryTool(
return await handleGetIntegrationActions({ ...args });
case "execute_integration_action":
return await handleExecuteIntegrationAction({ ...args });
case "memory_deep_search":
return await handleMemoryDeepSearch({ ...args, userId, source });
default:
throw new Error(`Unknown memory tool: ${toolName}`);
}
@ -546,3 +570,58 @@ async function handleExecuteIntegrationAction(args: any) {
};
}
}
// Handler for memory_deep_search
async function handleMemoryDeepSearch(args: any) {
try {
const { content, intentOverride, userId, source } = args;
if (!content) {
throw new Error("content is required");
}
// Trigger non-streaming deep search task
const handle = await deepSearch.triggerAndWait({
content,
userId,
stream: false, // MCP doesn't need streaming
intentOverride,
metadata: { source },
});
// Wait for task completion
if (handle.ok) {
return {
content: [
{
type: "text",
text: JSON.stringify(handle.output),
},
],
isError: false,
};
} else {
return {
content: [
{
type: "text",
text: `Error performing deep search: ${handle.error instanceof Error ? handle.error.message : String(handle.error)}`,
},
],
isError: true,
};
}
} catch (error) {
logger.error(`MCP deep search error: ${error}`);
return {
content: [
{
type: "text",
text: `Error performing deep search: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
}

View File

@ -10,8 +10,8 @@
"lint:fix": "eslint 'app/**/*.{ts,tsx,js,jsx}' --rule 'turbo/no-undeclared-env-vars:error' -f table",
"start": "node server.js",
"typecheck": "tsc",
"trigger:dev": "pnpm dlx trigger.dev@4.0.0-v4-beta.22 dev",
"trigger:deploy": "pnpm dlx trigger.dev@4.0.0-v4-beta.22 deploy"
"trigger:dev": "pnpm dlx trigger.dev@4.0.4 dev",
"trigger:deploy": "pnpm dlx trigger.dev@4.0.4 deploy"
},
"dependencies": {
"@ai-sdk/amazon-bedrock": "2.2.12",