mirror of
https://github.com/eliasstepanik/core.git
synced 2026-01-10 23:48:26 +00:00
Feat: deep search agent
This commit is contained in:
parent
82b430e658
commit
45a7364e57
@ -1,12 +1,13 @@
|
||||
import { z } from "zod";
|
||||
import { json } from "@remix-run/node";
|
||||
import { createActionApiRoute } from "~/services/routeBuilders/apiBuilder.server";
|
||||
import { DeepSearchService } from "~/services/deepSearch.server";
|
||||
import { SearchService } from "~/services/search.server";
|
||||
import { deepSearch } from "~/trigger/deep-search";
|
||||
import { runs } from "@trigger.dev/sdk";
|
||||
|
||||
const DeepSearchBodySchema = z.object({
|
||||
content: z.string().min(1, "Content is required"),
|
||||
intentOverride: z.string().optional(),
|
||||
stream: z.boolean().default(false),
|
||||
metadata: z
|
||||
.object({
|
||||
source: z.enum(["chrome", "obsidian", "mcp"]).optional(),
|
||||
@ -27,15 +28,36 @@ const { action, loader } = createActionApiRoute(
|
||||
corsStrategy: "all",
|
||||
},
|
||||
async ({ body, authentication }) => {
|
||||
const searchService = new SearchService();
|
||||
const deepSearchService = new DeepSearchService(searchService);
|
||||
let trigger;
|
||||
if (body.stream) {
|
||||
trigger = await deepSearch.trigger({
|
||||
content: body.content,
|
||||
userId: authentication.userId,
|
||||
stream: body.stream,
|
||||
intentOverride: body.intentOverride,
|
||||
metadata: body.metadata,
|
||||
});
|
||||
|
||||
const result = await deepSearchService.deepSearch(
|
||||
body,
|
||||
authentication.userId
|
||||
);
|
||||
return json(trigger);
|
||||
} else {
|
||||
const runHandler = await deepSearch.trigger({
|
||||
content: body.content,
|
||||
userId: authentication.userId,
|
||||
stream: body.stream,
|
||||
intentOverride: body.intentOverride,
|
||||
metadata: body.metadata,
|
||||
});
|
||||
|
||||
return json(result);
|
||||
for await (const run of runs.subscribeToRun(runHandler.id)) {
|
||||
if (run.status === "COMPLETED") {
|
||||
return json(run.output);
|
||||
} else if (run.status === "FAILED") {
|
||||
return json(run.error);
|
||||
}
|
||||
}
|
||||
|
||||
return json({ error: "Run failed" });
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
|
||||
@ -1,601 +0,0 @@
|
||||
import { logger } from "./logger.service";
|
||||
import { SearchService } from "./search.server";
|
||||
import { makeModelCall } from "~/lib/model.server";
|
||||
|
||||
/**
|
||||
* Request interface for deep search
|
||||
*/
|
||||
export interface DeepSearchRequest {
|
||||
content: string;
|
||||
intentOverride?: string;
|
||||
metadata?: {
|
||||
source?: "chrome" | "obsidian" | "mcp";
|
||||
url?: string;
|
||||
pageTitle?: string;
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Content analysis result from Phase 1
|
||||
*/
|
||||
interface ContentAnalysis {
|
||||
intent: string;
|
||||
reasoning: string;
|
||||
entities: string[];
|
||||
temporal: string[];
|
||||
actions: string[];
|
||||
topics: string[];
|
||||
priority: string[];
|
||||
}
|
||||
|
||||
/**
|
||||
* Agent decision from Phase 3
|
||||
*/
|
||||
interface AgentDecision {
|
||||
shouldContinue: boolean;
|
||||
confidence: number;
|
||||
reasoning: string;
|
||||
followUpQueries: string[];
|
||||
}
|
||||
|
||||
/**
|
||||
* Response interface for deep search
|
||||
*/
|
||||
export interface DeepSearchResponse {
|
||||
synthesis: string;
|
||||
episodes: Array<{
|
||||
content: string;
|
||||
createdAt: Date;
|
||||
spaceIds: string[];
|
||||
}>;
|
||||
}
|
||||
|
||||
/**
|
||||
* Deep Search Service
|
||||
*
|
||||
* Implements a 4-phase intelligent document search pipeline:
|
||||
* 1. Content Analysis - Infer intent and decompose content
|
||||
* 2. Parallel Broad Search - Fire multiple queries simultaneously
|
||||
* 3. Agent Deep Dive - Evaluate and follow up on promising leads
|
||||
* 4. Synthesis - Generate intent-aware context summary
|
||||
*/
|
||||
export class DeepSearchService {
|
||||
constructor(private searchService: SearchService) {}
|
||||
|
||||
/**
|
||||
* Main entry point for deep search
|
||||
*/
|
||||
async deepSearch(
|
||||
request: DeepSearchRequest,
|
||||
userId: string
|
||||
): Promise<DeepSearchResponse> {
|
||||
const startTime = Date.now();
|
||||
const { content, intentOverride, metadata } = request;
|
||||
|
||||
logger.info("Deep search started", { userId, contentLength: content.length });
|
||||
|
||||
try {
|
||||
// Phase 1: Analyze content and infer intent
|
||||
const analysis = intentOverride
|
||||
? await this.createAnalysisFromOverride(content, intentOverride)
|
||||
: await this.analyzeContent(content, this.getIntentHints(metadata));
|
||||
|
||||
logger.info("Phase 1 complete", { intent: analysis.intent });
|
||||
|
||||
// Extract spaceIds from metadata if available
|
||||
const spaceIds: string[] = [];
|
||||
|
||||
// Phase 2: Parallel broad search
|
||||
const { episodes: broadEpisodes } = await this.performBroadSearch(
|
||||
analysis,
|
||||
userId,
|
||||
spaceIds
|
||||
);
|
||||
|
||||
logger.info("Phase 2 complete", { episodesCount: broadEpisodes.length });
|
||||
|
||||
// Phase 3: Agent-driven deep dive (using episodes for richer context)
|
||||
const { episodes: deepDiveEpisodes } = await this.performDeepDive(
|
||||
content,
|
||||
analysis,
|
||||
broadEpisodes,
|
||||
userId,
|
||||
spaceIds
|
||||
);
|
||||
|
||||
logger.info("Phase 3 complete", {
|
||||
deepDiveEpisodes: deepDiveEpisodes.length,
|
||||
});
|
||||
|
||||
// Combine and deduplicate episodes
|
||||
const allEpisodes = [...broadEpisodes, ...deepDiveEpisodes];
|
||||
const episodeMap = new Map<string, any>();
|
||||
allEpisodes.forEach((ep) => {
|
||||
const key = `${ep.content}-${new Date(ep.createdAt).toISOString()}`;
|
||||
if (!episodeMap.has(key)) {
|
||||
episodeMap.set(key, ep);
|
||||
}
|
||||
});
|
||||
const episodes = Array.from(episodeMap.values());
|
||||
|
||||
// Phase 4: Synthesize results using episodes (richer context than facts)
|
||||
const synthesis = await this.synthesizeResults(
|
||||
content,
|
||||
analysis,
|
||||
episodes
|
||||
);
|
||||
|
||||
logger.info("Phase 4 complete", {
|
||||
duration: Date.now() - startTime,
|
||||
totalEpisodes: episodes.length,
|
||||
});
|
||||
|
||||
return {
|
||||
synthesis,
|
||||
episodes,
|
||||
};
|
||||
} catch (error) {
|
||||
logger.error("Deep search error", { error });
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Phase 1: Analyze content and infer intent
|
||||
*/
|
||||
private async analyzeContent(
|
||||
content: string,
|
||||
contextHints: string
|
||||
): Promise<ContentAnalysis> {
|
||||
const prompt = `
|
||||
Analyze this content holistically and determine the user's intent.
|
||||
|
||||
CONTENT:
|
||||
${content}
|
||||
${contextHints}
|
||||
|
||||
YOUR TASK:
|
||||
1. INFER INTENT: What is the user trying to do with this content?
|
||||
Examples: reading email, writing blog post, preparing for meeting,
|
||||
researching topic, tracking tasks, reviewing changes, etc.
|
||||
Be specific and descriptive.
|
||||
|
||||
2. EXTRACT KEY ELEMENTS:
|
||||
- Entities: People, places, organizations, objects (e.g., "John Doe", "Project Phoenix")
|
||||
- Temporal: Dates, times, recurring events (e.g., "Wednesday standup", "last month")
|
||||
- Actions: Verbs, action items, tasks (e.g., "follow up", "review", "fix bug")
|
||||
- Topics: Themes, subjects, domains (e.g., "car maintenance", "API design")
|
||||
|
||||
3. PRIORITIZE: Which elements are most important to search first?
|
||||
Return array like ["entities", "temporal", "topics"] ordered by importance.
|
||||
|
||||
RESPONSE FORMAT (JSON):
|
||||
{
|
||||
"intent": "specific intent description",
|
||||
"reasoning": "why this intent was inferred",
|
||||
"entities": ["entity1", "entity2"],
|
||||
"temporal": ["temporal1", "temporal2"],
|
||||
"actions": ["action1", "action2"],
|
||||
"topics": ["topic1", "topic2"],
|
||||
"priority": ["entities", "temporal", "topics"]
|
||||
}
|
||||
`;
|
||||
|
||||
let responseText = "";
|
||||
await makeModelCall(
|
||||
false,
|
||||
[{ role: "user", content: prompt }],
|
||||
(text) => {
|
||||
responseText = text;
|
||||
},
|
||||
{},
|
||||
"high"
|
||||
);
|
||||
|
||||
return JSON.parse(responseText);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create analysis from explicit intent override
|
||||
*/
|
||||
private async createAnalysisFromOverride(
|
||||
content: string,
|
||||
intentOverride: string
|
||||
): Promise<ContentAnalysis> {
|
||||
const prompt = `
|
||||
The user has specified their intent as: "${intentOverride}"
|
||||
|
||||
CONTENT:
|
||||
${content}
|
||||
|
||||
YOUR TASK:
|
||||
Extract key elements from this content:
|
||||
- Entities: People, places, organizations, objects
|
||||
- Temporal: Dates, times, recurring events
|
||||
- Actions: Verbs, action items, tasks
|
||||
- Topics: Themes, subjects, domains
|
||||
|
||||
Prioritize elements based on the specified intent.
|
||||
|
||||
RESPONSE FORMAT (JSON):
|
||||
{
|
||||
"intent": "${intentOverride}",
|
||||
"reasoning": "user-specified intent",
|
||||
"entities": ["entity1", "entity2"],
|
||||
"temporal": ["temporal1", "temporal2"],
|
||||
"actions": ["action1", "action2"],
|
||||
"topics": ["topic1", "topic2"],
|
||||
"priority": ["entities", "temporal", "topics"]
|
||||
}
|
||||
`;
|
||||
|
||||
let responseText = "";
|
||||
await makeModelCall(
|
||||
false,
|
||||
[{ role: "user", content: prompt }],
|
||||
(text) => {
|
||||
responseText = text;
|
||||
},
|
||||
{},
|
||||
"high"
|
||||
);
|
||||
|
||||
return JSON.parse(responseText);
|
||||
}
|
||||
|
||||
/**
|
||||
* Phase 2: Perform parallel broad search
|
||||
*/
|
||||
private async performBroadSearch(
|
||||
analysis: ContentAnalysis,
|
||||
userId: string,
|
||||
spaceIds: string[]
|
||||
): Promise<{ facts: any[]; episodes: any[] }> {
|
||||
// Build query list based on priority
|
||||
const queries: string[] = [];
|
||||
|
||||
// Add queries based on priority order
|
||||
for (const category of analysis.priority) {
|
||||
switch (category) {
|
||||
case "entities":
|
||||
queries.push(...analysis.entities.slice(0, 3));
|
||||
break;
|
||||
case "temporal":
|
||||
queries.push(...analysis.temporal.slice(0, 2));
|
||||
break;
|
||||
case "topics":
|
||||
queries.push(...analysis.topics.slice(0, 2));
|
||||
break;
|
||||
case "actions":
|
||||
queries.push(...analysis.actions.slice(0, 2));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Ensure we have at least some queries
|
||||
if (queries.length === 0) {
|
||||
queries.push(
|
||||
...analysis.entities.slice(0, 2),
|
||||
...analysis.topics.slice(0, 2)
|
||||
);
|
||||
}
|
||||
|
||||
// Cap at 10 queries max
|
||||
const finalQueries = queries.slice(0, 10);
|
||||
|
||||
logger.info(`Broad search: ${finalQueries.length} parallel queries`);
|
||||
|
||||
// Fire all searches in parallel
|
||||
const results = await Promise.all(
|
||||
finalQueries.map((query) =>
|
||||
this.searchService.search(query, userId, {
|
||||
limit: 20,
|
||||
spaceIds,
|
||||
})
|
||||
)
|
||||
);
|
||||
|
||||
// Flatten and deduplicate facts
|
||||
const allFacts = results.flatMap((r) => r.facts);
|
||||
const uniqueFacts = Array.from(
|
||||
new Map(allFacts.map((f) => [f.fact, f])).values()
|
||||
);
|
||||
|
||||
// Flatten and deduplicate episodes
|
||||
const allEpisodes = results.flatMap((r) => r.episodes);
|
||||
const uniqueEpisodes = Array.from(
|
||||
new Map(allEpisodes.map((e) => [`${e.content}-${e.createdAt}`, e])).values()
|
||||
);
|
||||
|
||||
return { facts: uniqueFacts, episodes: uniqueEpisodes };
|
||||
}
|
||||
|
||||
/**
|
||||
* Phase 3: Perform agent-driven deep dive using episodes
|
||||
*/
|
||||
private async performDeepDive(
|
||||
content: string,
|
||||
analysis: ContentAnalysis,
|
||||
broadEpisodes: any[],
|
||||
userId: string,
|
||||
spaceIds: string[]
|
||||
): Promise<{ facts: any[]; episodes: any[] }> {
|
||||
// Check if we have any results worth evaluating
|
||||
if (broadEpisodes.length === 0) {
|
||||
logger.info("No episodes from broad search, skipping deep dive");
|
||||
return { facts: [], episodes: [] };
|
||||
}
|
||||
|
||||
// Agent decides on follow-up based on episodes
|
||||
const decision = await this.decideFollowUp(
|
||||
content,
|
||||
analysis,
|
||||
broadEpisodes
|
||||
);
|
||||
|
||||
if (!decision.shouldContinue) {
|
||||
logger.info(`Agent stopped: ${decision.reasoning}`);
|
||||
return { facts: [], episodes: [] };
|
||||
}
|
||||
|
||||
logger.info(
|
||||
`Agent continuing with ${decision.followUpQueries.length} follow-up queries`
|
||||
);
|
||||
|
||||
// Execute follow-up queries sequentially
|
||||
const deepDiveFacts = [];
|
||||
const deepDiveEpisodes = [];
|
||||
|
||||
for (const query of decision.followUpQueries) {
|
||||
const result = await this.searchService.search(query, userId, {
|
||||
limit: 20,
|
||||
spaceIds,
|
||||
});
|
||||
|
||||
deepDiveFacts.push(...result.facts);
|
||||
deepDiveEpisodes.push(...result.episodes);
|
||||
|
||||
// Stop if we've gathered enough episodes
|
||||
if (deepDiveEpisodes.length > 20) {
|
||||
logger.info("Sufficient context gathered, stopping early");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return { facts: deepDiveFacts, episodes: deepDiveEpisodes };
|
||||
}
|
||||
|
||||
/**
|
||||
* Agent decides on follow-up queries based on episodes
|
||||
*/
|
||||
private async decideFollowUp(
|
||||
content: string,
|
||||
analysis: ContentAnalysis,
|
||||
episodes: any[]
|
||||
): Promise<AgentDecision> {
|
||||
const prompt = `
|
||||
You are analyzing memory search results to decide if deeper investigation is needed.
|
||||
|
||||
ORIGINAL CONTENT:
|
||||
${content}
|
||||
|
||||
INFERRED INTENT: ${analysis.intent}
|
||||
|
||||
FOUND MEMORIES (${episodes.length} episodes):
|
||||
${episodes
|
||||
.map((ep, i) => {
|
||||
const date = new Date(ep.createdAt).toISOString().split("T")[0];
|
||||
const preview = ep.content;
|
||||
return `
|
||||
--- Memory ${i + 1} (${date}) ---
|
||||
${preview}
|
||||
`;
|
||||
})
|
||||
.join("\n")}
|
||||
|
||||
YOUR TASK:
|
||||
1. EVALUATE MEMORY RELEVANCE:
|
||||
- Are these memories directly relevant to the original content?
|
||||
- Do they provide sufficient context for the intent "${analysis.intent}"?
|
||||
- What key information or connections are missing?
|
||||
- Are there entities, topics, or concepts mentioned that warrant deeper exploration?
|
||||
|
||||
2. DECIDE ON FOLLOW-UP:
|
||||
- If memories are highly relevant and complete: STOP, no follow-up needed
|
||||
- If memories are relevant but incomplete: Continue with 1-2 clarifying queries
|
||||
- If memories reveal new entities/topics worth exploring: Continue with 2-3 follow-up queries
|
||||
- If memories are sparse or off-topic: STOP, unlikely to find better results
|
||||
|
||||
3. GENERATE FOLLOW-UP QUERIES (if continuing):
|
||||
- Extract new entities, topics, or connections mentioned in the memories
|
||||
- Formulate specific, targeted queries based on what's missing
|
||||
- Focus on enriching context for the "${analysis.intent}" intent
|
||||
- Maximum 3 queries
|
||||
|
||||
RESPONSE FORMAT (JSON):
|
||||
{
|
||||
"shouldContinue": true/false,
|
||||
"confidence": 0.0-1.0,
|
||||
"reasoning": "explanation of decision based on memory analysis",
|
||||
"followUpQueries": ["query1", "query2"]
|
||||
}
|
||||
`;
|
||||
|
||||
let responseText = "";
|
||||
await makeModelCall(
|
||||
false,
|
||||
[{ role: "user", content: prompt }],
|
||||
(text) => {
|
||||
responseText = text;
|
||||
},
|
||||
{},
|
||||
"high"
|
||||
);
|
||||
|
||||
return JSON.parse(responseText);
|
||||
}
|
||||
|
||||
/**
|
||||
* Phase 4: Synthesize results based on intent using episodes
|
||||
*/
|
||||
private async synthesizeResults(
|
||||
content: string,
|
||||
analysis: ContentAnalysis,
|
||||
episodes: any[]
|
||||
): Promise<string> {
|
||||
if (episodes.length === 0) {
|
||||
return "No relevant context found in memory.";
|
||||
}
|
||||
|
||||
const prompt = `
|
||||
You are synthesizing relevant context from the user's memory to help an AI assistant respond more effectively.
|
||||
|
||||
CURRENT CONTENT:
|
||||
${content}
|
||||
|
||||
USER INTENT: ${analysis.intent}
|
||||
|
||||
RELEVANT MEMORY CONTEXT (${episodes.length} past conversations):
|
||||
${episodes
|
||||
.map((ep, i) => {
|
||||
const date = new Date(ep.createdAt).toISOString().split("T")[0];
|
||||
const preview = ep.content;
|
||||
return `
|
||||
[${date}]
|
||||
${preview}
|
||||
`;
|
||||
})
|
||||
.join("\n\n")}
|
||||
|
||||
SYNTHESIS OBJECTIVE:
|
||||
${this.getIntentGuidance(analysis.intent)}
|
||||
|
||||
OUTPUT REQUIREMENTS:
|
||||
- Provide clear, actionable context from the memories
|
||||
- Start directly with relevant information, no meta-commentary
|
||||
- Present facts, decisions, preferences, and patterns from past conversations
|
||||
- Connect past context to current content when relevant
|
||||
- Note any gaps, contradictions, or evolution in thinking
|
||||
- Keep it factual and concise - this will be used by an AI assistant
|
||||
- Do not use conversational language like "you said" or "you mentioned"
|
||||
- Present information in third person or as direct facts
|
||||
|
||||
Good examples:
|
||||
- "Previous discussions on X covered Y and Z. Key decision: ..."
|
||||
- "From March 2024 conversation: [specific context]"
|
||||
- "Related work on [project] established that..."
|
||||
- "Past preferences indicate..."
|
||||
- "Timeline: [sequence of events/decisions]"
|
||||
`;
|
||||
|
||||
let synthesis = "";
|
||||
await makeModelCall(
|
||||
false,
|
||||
[{ role: "user", content: prompt }],
|
||||
(text) => {
|
||||
synthesis = text;
|
||||
},
|
||||
{},
|
||||
"high"
|
||||
);
|
||||
|
||||
return synthesis;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get synthesis guidance based on intent keywords
|
||||
*/
|
||||
private getIntentGuidance(intent: string): string {
|
||||
const intentLower = intent.toLowerCase();
|
||||
|
||||
if (
|
||||
intentLower.includes("read") ||
|
||||
intentLower.includes("understand") ||
|
||||
intentLower.includes("email")
|
||||
) {
|
||||
return "Focus on: Who/what is this about? What context should the reader know? Provide recognition and background.";
|
||||
}
|
||||
|
||||
if (
|
||||
intentLower.includes("writ") ||
|
||||
intentLower.includes("draft") ||
|
||||
intentLower.includes("blog") ||
|
||||
intentLower.includes("post")
|
||||
) {
|
||||
return "Focus on: What has been said before on this topic? What's consistent with past statements? What gaps or contradictions exist?";
|
||||
}
|
||||
|
||||
if (
|
||||
intentLower.includes("meeting") ||
|
||||
intentLower.includes("prep") ||
|
||||
intentLower.includes("standup") ||
|
||||
intentLower.includes("agenda")
|
||||
) {
|
||||
return "Focus on: Key discussion topics, recent relevant context, pending action items, what needs to be addressed.";
|
||||
}
|
||||
|
||||
if (
|
||||
intentLower.includes("research") ||
|
||||
intentLower.includes("explore") ||
|
||||
intentLower.includes("learn")
|
||||
) {
|
||||
return "Focus on: Patterns across memories, connections between topics, insights and evolution over time.";
|
||||
}
|
||||
|
||||
if (
|
||||
intentLower.includes("follow") ||
|
||||
intentLower.includes("task") ||
|
||||
intentLower.includes("todo") ||
|
||||
intentLower.includes("action")
|
||||
) {
|
||||
return "Focus on: Action items, pending tasks, decisions made, what needs follow-up, deadlines.";
|
||||
}
|
||||
|
||||
if (
|
||||
intentLower.includes("review") ||
|
||||
intentLower.includes("change") ||
|
||||
intentLower.includes("update") ||
|
||||
intentLower.includes("diff")
|
||||
) {
|
||||
return "Focus on: What has changed, what's new information, how things have evolved, timeline of updates.";
|
||||
}
|
||||
|
||||
// Default
|
||||
return "Focus on: Most relevant context and key insights that would be valuable for understanding this content.";
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate context hints from metadata
|
||||
*/
|
||||
private getIntentHints(
|
||||
metadata?: DeepSearchRequest["metadata"]
|
||||
): string {
|
||||
if (!metadata) return "";
|
||||
|
||||
const hints: string[] = [];
|
||||
|
||||
// Chrome extension context
|
||||
if (metadata.source === "chrome") {
|
||||
if (metadata.url?.includes("mail.google.com")) {
|
||||
hints.push("Content is from email client (likely reading)");
|
||||
}
|
||||
if (metadata.url?.includes("calendar.google.com")) {
|
||||
hints.push("Content is from calendar (likely meeting_prep)");
|
||||
}
|
||||
if (metadata.url?.includes("docs.google.com")) {
|
||||
hints.push("Content is from document editor (likely writing)");
|
||||
}
|
||||
}
|
||||
|
||||
// Obsidian context
|
||||
if (metadata.source === "obsidian") {
|
||||
hints.push(
|
||||
"Content is from note editor (could be writing or research)"
|
||||
);
|
||||
}
|
||||
|
||||
return hints.length > 0
|
||||
? `\n\nCONTEXT HINTS:\n${hints.join("\n")}`
|
||||
: "";
|
||||
}
|
||||
}
|
||||
@ -80,7 +80,7 @@ export class SearchService {
|
||||
opts,
|
||||
);
|
||||
|
||||
// // 3. Apply adaptive filtering based on score threshold and minimum count
|
||||
// 3. Apply adaptive filtering based on score threshold and minimum count
|
||||
const filteredResults = this.applyAdaptiveFiltering(rankedStatements, opts);
|
||||
|
||||
// 3. Return top results
|
||||
|
||||
@ -59,9 +59,37 @@ export async function* processTag(
|
||||
const hasStartTag = chunk.includes(startTag);
|
||||
const hasClosingTag = chunk.includes("</");
|
||||
|
||||
// Check if we're currently accumulating a potential end tag
|
||||
const accumulatingEndTag = state.message.endsWith("</") ||
|
||||
state.message.match(/<\/[a-z_]*$/i);
|
||||
|
||||
if (hasClosingTag && !hasStartTag && !hasEndTag) {
|
||||
// If chunk only has </ but not the full end tag, accumulate it
|
||||
state.message += chunk;
|
||||
} else if (accumulatingEndTag) {
|
||||
// Continue accumulating if we're in the middle of a potential end tag
|
||||
state.message += chunk;
|
||||
// Check if we now have the complete end tag
|
||||
if (state.message.includes(endTag)) {
|
||||
// Process the complete message with end tag
|
||||
const endIndex = state.message.indexOf(endTag);
|
||||
const finalMessage = state.message.slice(0, endIndex).trim();
|
||||
const messageToSend = finalMessage.slice(
|
||||
finalMessage.indexOf(state.lastSent) + state.lastSent.length,
|
||||
);
|
||||
|
||||
if (messageToSend) {
|
||||
yield Message(
|
||||
messageToSend,
|
||||
states.chunk as AgentMessageType,
|
||||
extraParams,
|
||||
);
|
||||
}
|
||||
yield Message("", states.end as AgentMessageType, extraParams);
|
||||
|
||||
state.message = finalMessage;
|
||||
state.messageEnded = true;
|
||||
}
|
||||
} else if (hasEndTag || (!hasEndTag && !hasClosingTag)) {
|
||||
let currentMessage = comingFromStart
|
||||
? state.message
|
||||
|
||||
269
apps/webapp/app/trigger/deep-search/deep-search-utils.ts
Normal file
269
apps/webapp/app/trigger/deep-search/deep-search-utils.ts
Normal file
@ -0,0 +1,269 @@
|
||||
import { type CoreMessage } from "ai";
|
||||
import { logger } from "@trigger.dev/sdk/v3";
|
||||
import { generate, processTag } from "../chat/stream-utils";
|
||||
import { type AgentMessage, AgentMessageType, Message } from "../chat/types";
|
||||
import { TotalCost } from "../utils/types";
|
||||
|
||||
/**
|
||||
* Run the deep search ReAct loop
|
||||
* Async generator that yields AgentMessage objects for streaming
|
||||
* Follows the exact same pattern as chat-utils.ts
|
||||
*/
|
||||
export async function* run(
|
||||
initialMessages: CoreMessage[],
|
||||
searchTool: any
|
||||
): AsyncGenerator<AgentMessage, any, any> {
|
||||
let messages = [...initialMessages];
|
||||
let completed = false;
|
||||
let guardLoop = 0;
|
||||
let searchCount = 0;
|
||||
let totalEpisodesFound = 0;
|
||||
const seenEpisodeIds = new Set<string>(); // Track unique episodes
|
||||
const totalCost: TotalCost = {
|
||||
inputTokens: 0,
|
||||
outputTokens: 0,
|
||||
cost: 0,
|
||||
};
|
||||
|
||||
const tools = {
|
||||
searchMemory: searchTool,
|
||||
};
|
||||
|
||||
logger.info("Starting deep search ReAct loop");
|
||||
|
||||
try {
|
||||
while (!completed && guardLoop < 50) {
|
||||
logger.info(`ReAct loop iteration ${guardLoop}, searches: ${searchCount}`);
|
||||
|
||||
// Call LLM with current message history
|
||||
const response = generate(messages, false, (event)=>{const usage = event.usage;
|
||||
totalCost.inputTokens += usage.promptTokens;
|
||||
totalCost.outputTokens += usage.completionTokens;
|
||||
}, tools);
|
||||
|
||||
let totalMessage = "";
|
||||
const toolCalls: any[] = [];
|
||||
|
||||
// States for streaming final_response tags
|
||||
const messageState = {
|
||||
inTag: false,
|
||||
message: "",
|
||||
messageEnded: false,
|
||||
lastSent: "",
|
||||
};
|
||||
|
||||
// Process streaming response
|
||||
for await (const chunk of response) {
|
||||
if (typeof chunk === "object" && chunk.type === "tool-call") {
|
||||
// Agent made a tool call
|
||||
toolCalls.push(chunk);
|
||||
logger.info(`Tool call: ${chunk.toolName}`);
|
||||
} else if (typeof chunk === "string") {
|
||||
totalMessage += chunk;
|
||||
|
||||
// Stream final_response tags using processTag
|
||||
if (!messageState.messageEnded) {
|
||||
yield* processTag(
|
||||
messageState,
|
||||
totalMessage,
|
||||
chunk,
|
||||
"<final_response>",
|
||||
"</final_response>",
|
||||
{
|
||||
start: AgentMessageType.MESSAGE_START,
|
||||
chunk: AgentMessageType.MESSAGE_CHUNK,
|
||||
end: AgentMessageType.MESSAGE_END,
|
||||
}
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check for final response
|
||||
if (totalMessage.includes("<final_response>")) {
|
||||
const match = totalMessage.match(
|
||||
/<final_response>(.*?)<\/final_response>/s
|
||||
);
|
||||
|
||||
if (match) {
|
||||
// Accept synthesis - completed
|
||||
completed = true;
|
||||
logger.info(
|
||||
`Final synthesis accepted after ${searchCount} searches, ${totalEpisodesFound} unique episodes found`
|
||||
);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Execute tool calls sequentially
|
||||
if (toolCalls.length > 0) {
|
||||
for (const toolCall of toolCalls) {
|
||||
// Add assistant message with tool call
|
||||
messages.push({
|
||||
role: "assistant",
|
||||
content: [
|
||||
{
|
||||
type: "tool-call",
|
||||
toolCallId: toolCall.toolCallId,
|
||||
toolName: toolCall.toolName,
|
||||
args: toolCall.args,
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
// Execute the search tool
|
||||
logger.info(`Executing search: ${JSON.stringify(toolCall.args)}`);
|
||||
|
||||
// Notify about search starting
|
||||
yield Message("", AgentMessageType.SKILL_START);
|
||||
yield Message(
|
||||
`\nSearching memory: "${toolCall.args.query}"...\n`,
|
||||
AgentMessageType.SKILL_CHUNK
|
||||
);
|
||||
yield Message("", AgentMessageType.SKILL_END);
|
||||
|
||||
const result = await searchTool.execute(toolCall.args);
|
||||
searchCount++;
|
||||
|
||||
// Deduplicate episodes - track unique IDs
|
||||
let uniqueNewEpisodes = 0;
|
||||
if (result.episodes && Array.isArray(result.episodes)) {
|
||||
for (const episode of result.episodes) {
|
||||
const episodeId =
|
||||
episode.id || episode._id || JSON.stringify(episode);
|
||||
if (!seenEpisodeIds.has(episodeId)) {
|
||||
seenEpisodeIds.add(episodeId);
|
||||
uniqueNewEpisodes++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const episodesInThisSearch = result.episodes?.length || 0;
|
||||
totalEpisodesFound = seenEpisodeIds.size; // Use unique count
|
||||
|
||||
// Add tool result to message history
|
||||
messages.push({
|
||||
role: "tool",
|
||||
content: [
|
||||
{
|
||||
type: "tool-result",
|
||||
toolName: toolCall.toolName,
|
||||
toolCallId: toolCall.toolCallId,
|
||||
result: result,
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
logger.info(
|
||||
`Search ${searchCount} completed: ${episodesInThisSearch} episodes (${uniqueNewEpisodes} new, ${totalEpisodesFound} unique total)`
|
||||
);
|
||||
}
|
||||
|
||||
// If found no episodes and haven't exhausted search attempts, require more searches
|
||||
if (totalEpisodesFound === 0 && searchCount < 7) {
|
||||
logger.info(
|
||||
`Agent attempted synthesis with 0 unique episodes after ${searchCount} searches - requiring more attempts`
|
||||
);
|
||||
|
||||
yield Message("", AgentMessageType.SKILL_START);
|
||||
yield Message(
|
||||
`No relevant context found yet - trying different search angles...`,
|
||||
AgentMessageType.SKILL_CHUNK
|
||||
);
|
||||
yield Message("", AgentMessageType.SKILL_END);
|
||||
|
||||
messages.push({
|
||||
role: "system",
|
||||
content: `You have performed ${searchCount} searches but found 0 unique relevant episodes. Your queries may be too abstract or not matching the user's actual conversation topics.
|
||||
|
||||
Review your DECOMPOSITION:
|
||||
- Are you using specific terms from the content?
|
||||
- Try searching broader related topics the user might have discussed
|
||||
- Try different terminology or related concepts
|
||||
- Search for user's projects, work areas, or interests
|
||||
|
||||
Continue with different search strategies (you can search up to 7-10 times total).`,
|
||||
});
|
||||
|
||||
guardLoop++;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Soft nudging after all searches executed (awareness, not commands)
|
||||
if (totalEpisodesFound >= 30 && searchCount >= 3) {
|
||||
logger.info(
|
||||
`Nudging: ${totalEpisodesFound} unique episodes found - suggesting synthesis consideration`
|
||||
);
|
||||
|
||||
messages.push({
|
||||
role: "system",
|
||||
content: `Context awareness: You have found ${totalEpisodesFound} unique episodes across ${searchCount} searches. This represents substantial context. Consider whether you have sufficient information for quality synthesis, or if additional search angles would meaningfully improve understanding.`,
|
||||
});
|
||||
} else if (totalEpisodesFound >= 15 && searchCount >= 5) {
|
||||
logger.info(
|
||||
`Nudging: ${totalEpisodesFound} unique episodes after ${searchCount} searches - suggesting evaluation`
|
||||
);
|
||||
|
||||
messages.push({
|
||||
role: "system",
|
||||
content: `Progress update: You have ${totalEpisodesFound} unique episodes from ${searchCount} searches. Evaluate whether you have covered the main angles from your decomposition, or if important aspects remain unexplored.`,
|
||||
});
|
||||
} else if (searchCount >= 7) {
|
||||
logger.info(
|
||||
`Nudging: ${searchCount} searches completed with ${totalEpisodesFound} unique episodes`
|
||||
);
|
||||
|
||||
messages.push({
|
||||
role: "system",
|
||||
content: `Search depth: You have performed ${searchCount} searches and found ${totalEpisodesFound} unique episodes. Consider whether additional searches would yield meaningfully different context, or if it's time to synthesize what you've discovered.`,
|
||||
});
|
||||
} if (searchCount >= 10) {
|
||||
logger.info(
|
||||
`Reached maximum search limit (10), forcing synthesis with ${totalEpisodesFound} unique episodes`
|
||||
);
|
||||
|
||||
yield Message("", AgentMessageType.SKILL_START);
|
||||
yield Message(
|
||||
`Maximum searches reached - synthesizing results...`,
|
||||
AgentMessageType.SKILL_CHUNK
|
||||
);
|
||||
yield Message("", AgentMessageType.SKILL_END);
|
||||
|
||||
messages.push({
|
||||
role: "system",
|
||||
content: `You have performed 10 searches and found ${totalEpisodesFound} unique episodes. This is the maximum allowed. You MUST now provide your final synthesis wrapped in <final_response> tags based on what you've found.`,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Safety check - if no tool calls and no final response, something went wrong
|
||||
if (toolCalls.length === 0 && !totalMessage.includes("<final_response>")) {
|
||||
logger.warn("Agent produced neither tool calls nor final response");
|
||||
|
||||
messages.push({
|
||||
role: "system",
|
||||
content:
|
||||
"You must either use the searchMemory tool to search for more context, or provide your final synthesis wrapped in <final_response> tags.",
|
||||
});
|
||||
}
|
||||
|
||||
guardLoop++;
|
||||
}
|
||||
|
||||
if (!completed) {
|
||||
logger.warn(`Loop ended without completion after ${guardLoop} iterations`);
|
||||
yield Message("", AgentMessageType.MESSAGE_START);
|
||||
yield Message(
|
||||
"Deep search did not complete - maximum iterations reached.",
|
||||
AgentMessageType.MESSAGE_CHUNK
|
||||
);
|
||||
yield Message("", AgentMessageType.MESSAGE_END);
|
||||
}
|
||||
|
||||
yield Message("Stream ended", AgentMessageType.STREAM_END);
|
||||
} catch (error) {
|
||||
logger.error(`Deep search error: ${error}`);
|
||||
yield Message((error as Error).message, AgentMessageType.ERROR);
|
||||
yield Message("Stream ended", AgentMessageType.STREAM_END);
|
||||
}
|
||||
}
|
||||
117
apps/webapp/app/trigger/deep-search/index.ts
Normal file
117
apps/webapp/app/trigger/deep-search/index.ts
Normal file
@ -0,0 +1,117 @@
|
||||
import { metadata, task } from "@trigger.dev/sdk";
|
||||
import { type CoreMessage } from "ai";
|
||||
import { logger } from "@trigger.dev/sdk/v3";
|
||||
import { nanoid } from "nanoid";
|
||||
import {
|
||||
deletePersonalAccessToken,
|
||||
getOrCreatePersonalAccessToken,
|
||||
} from "../utils/utils";
|
||||
import { getReActPrompt } from "./prompt";
|
||||
import { type DeepSearchPayload, type DeepSearchResponse } from "./types";
|
||||
import { createSearchMemoryTool } from "./utils";
|
||||
import { run } from "./deep-search-utils";
|
||||
import { AgentMessageType } from "../chat/types";
|
||||
|
||||
export const deepSearch = task({
|
||||
id: "deep-search",
|
||||
maxDuration: 3000,
|
||||
run: async (payload: DeepSearchPayload): Promise<DeepSearchResponse> => {
|
||||
const {
|
||||
content,
|
||||
userId,
|
||||
stream,
|
||||
metadata: meta,
|
||||
intentOverride,
|
||||
} = payload;
|
||||
|
||||
const randomKeyName = `deepSearch_${nanoid(10)}`;
|
||||
|
||||
// Get or create token for search API calls
|
||||
const pat = await getOrCreatePersonalAccessToken({
|
||||
name: randomKeyName,
|
||||
userId: userId as string,
|
||||
});
|
||||
|
||||
if (!pat?.token) {
|
||||
throw new Error("Failed to create personal access token");
|
||||
}
|
||||
|
||||
try {
|
||||
// Create search tool that agent will use
|
||||
const searchTool = createSearchMemoryTool(pat.token);
|
||||
|
||||
// Build initial messages with ReAct prompt
|
||||
const initialMessages: CoreMessage[] = [
|
||||
{
|
||||
role: "system",
|
||||
content: getReActPrompt(meta, intentOverride),
|
||||
},
|
||||
{
|
||||
role: "user",
|
||||
content: `CONTENT TO ANALYZE:\n${content}\n\nPlease search my memory for relevant context and synthesize what you find.`,
|
||||
},
|
||||
];
|
||||
|
||||
// Run the ReAct loop generator
|
||||
const llmResponse = run(initialMessages, searchTool);
|
||||
|
||||
if (stream) {
|
||||
// Streaming mode: stream via metadata.stream like chat.ts does
|
||||
// This makes all message types available to clients in real-time
|
||||
const messageStream = await metadata.stream("messages", llmResponse);
|
||||
|
||||
let synthesis = "";
|
||||
|
||||
for await (const step of messageStream) {
|
||||
// MESSAGE_CHUNK: Final synthesis - accumulate and stream
|
||||
if (step.type === AgentMessageType.MESSAGE_CHUNK) {
|
||||
synthesis += step.message;
|
||||
}
|
||||
|
||||
// STREAM_END: Loop completed
|
||||
if (step.type === AgentMessageType.STREAM_END) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
await deletePersonalAccessToken(pat?.id);
|
||||
|
||||
// Clean up any remaining tags
|
||||
synthesis = synthesis
|
||||
.replace(/<final_response>/gi, "")
|
||||
.replace(/<\/final_response>/gi, "")
|
||||
.trim();
|
||||
|
||||
return { synthesis };
|
||||
} else {
|
||||
// Non-streaming mode: consume generator without streaming
|
||||
let synthesis = "";
|
||||
|
||||
for await (const step of llmResponse) {
|
||||
if (step.type === AgentMessageType.MESSAGE_CHUNK) {
|
||||
synthesis += step.message;
|
||||
}
|
||||
// Could also collect episodes from tool results if needed
|
||||
}
|
||||
|
||||
await deletePersonalAccessToken(pat?.id);
|
||||
|
||||
// Clean up any remaining tags
|
||||
synthesis = synthesis
|
||||
.replace(/<final_response>/gi, "")
|
||||
.replace(/<\/final_response>/gi, "")
|
||||
.trim();
|
||||
|
||||
// For non-streaming, we need to get episodes from search results
|
||||
// Since we don't have direct access to search results in this flow,
|
||||
// we'll return synthesis without episodes for now
|
||||
// (episodes can be extracted from tool results if needed)
|
||||
return { synthesis };
|
||||
}
|
||||
} catch (error) {
|
||||
await deletePersonalAccessToken(pat?.id);
|
||||
logger.error(`Deep search error: ${error}`);
|
||||
throw error;
|
||||
}
|
||||
},
|
||||
});
|
||||
148
apps/webapp/app/trigger/deep-search/prompt.ts
Normal file
148
apps/webapp/app/trigger/deep-search/prompt.ts
Normal file
@ -0,0 +1,148 @@
|
||||
export function getReActPrompt(
|
||||
metadata?: { source?: string; url?: string; pageTitle?: string },
|
||||
intentOverride?: string
|
||||
): string {
|
||||
const contextHints = [];
|
||||
|
||||
if (metadata?.source === "chrome" && metadata?.url?.includes("mail.google.com")) {
|
||||
contextHints.push("Content is from email - likely reading intent");
|
||||
}
|
||||
if (metadata?.source === "chrome" && metadata?.url?.includes("calendar.google.com")) {
|
||||
contextHints.push("Content is from calendar - likely meeting prep intent");
|
||||
}
|
||||
if (metadata?.source === "chrome" && metadata?.url?.includes("docs.google.com")) {
|
||||
contextHints.push("Content is from document editor - likely writing intent");
|
||||
}
|
||||
if (metadata?.source === "obsidian") {
|
||||
contextHints.push("Content is from note editor - likely writing or research intent");
|
||||
}
|
||||
|
||||
return `You are a memory research agent analyzing content to find relevant context.
|
||||
|
||||
YOUR PROCESS (ReAct Framework):
|
||||
|
||||
1. DECOMPOSE: First, break down the content into structured categories
|
||||
|
||||
Analyze the content and extract:
|
||||
a) ENTITIES: Specific people, project names, tools, products mentioned
|
||||
Example: "John Smith", "Phoenix API", "Redis", "mobile app"
|
||||
|
||||
b) TOPICS & CONCEPTS: Key subjects, themes, domains
|
||||
Example: "authentication", "database design", "performance optimization"
|
||||
|
||||
c) TEMPORAL MARKERS: Time references, deadlines, events
|
||||
Example: "last week's meeting", "Q2 launch", "yesterday's discussion"
|
||||
|
||||
d) ACTIONS & TASKS: What's being done, decided, or requested
|
||||
Example: "implement feature", "review code", "make decision on"
|
||||
|
||||
e) USER INTENT: What is the user trying to accomplish?
|
||||
${intentOverride ? `User specified: "${intentOverride}"` : "Infer from context: reading/writing/meeting prep/research/task tracking/review"}
|
||||
|
||||
2. FORM QUERIES: Create targeted search queries from your decomposition
|
||||
|
||||
Based on decomposition, form specific queries:
|
||||
- Search for each entity by name (people, projects, tools)
|
||||
- Search for topics the user has discussed before
|
||||
- Search for related work or conversations in this domain
|
||||
- Use the user's actual terminology, not generic concepts
|
||||
|
||||
EXAMPLE - Content: "Email from Sarah about the API redesign we discussed last week"
|
||||
Decomposition:
|
||||
- Entities: "Sarah", "API redesign"
|
||||
- Topics: "API design", "redesign"
|
||||
- Temporal: "last week"
|
||||
- Actions: "discussed", "email communication"
|
||||
- Intent: Reading (email) / meeting prep
|
||||
|
||||
Queries to form:
|
||||
✅ "Sarah" (find past conversations with Sarah)
|
||||
✅ "API redesign" or "API design" (find project discussions)
|
||||
✅ "last week" + "Sarah" (find recent context)
|
||||
✅ "meetings" or "discussions" (find related conversations)
|
||||
|
||||
❌ Avoid: "email communication patterns", "API architecture philosophy"
|
||||
(These are abstract - search what user actually discussed!)
|
||||
|
||||
3. SEARCH: Execute your queries using searchMemory tool
|
||||
- Start with 2-3 core searches based on main entities/topics
|
||||
- Make each search specific and targeted
|
||||
- Use actual terms from the content, not rephrased concepts
|
||||
|
||||
4. OBSERVE: Evaluate search results
|
||||
- Did you find relevant episodes? How many unique ones?
|
||||
- What specific context emerged?
|
||||
- What new entities/topics appeared in results?
|
||||
- Are there gaps in understanding?
|
||||
- Should you search more angles?
|
||||
|
||||
Note: Episode counts are automatically deduplicated across searches - overlapping episodes are only counted once.
|
||||
|
||||
5. REACT: Decide next action based on observations
|
||||
|
||||
STOPPING CRITERIA - Proceed to SYNTHESIZE if ANY of these are true:
|
||||
- You found 20+ unique episodes across your searches → ENOUGH CONTEXT
|
||||
- You performed 5+ searches and found relevant episodes → SUFFICIENT
|
||||
- You performed 7+ searches regardless of results → EXHAUSTED STRATEGIES
|
||||
- You found strong relevant context from multiple angles → COMPLETE
|
||||
|
||||
System nudges will provide awareness of your progress, but you decide when synthesis quality would be optimal.
|
||||
|
||||
If you found little/no context AND searched less than 7 times:
|
||||
- Try different query angles from your decomposition
|
||||
- Search broader related topics
|
||||
- Search user's projects or work areas
|
||||
- Try alternative terminology
|
||||
|
||||
⚠️ DO NOT search endlessly - if you found relevant episodes, STOP and synthesize!
|
||||
|
||||
6. SYNTHESIZE: After gathering sufficient context, provide final answer
|
||||
- Wrap your synthesis in <final_response> tags
|
||||
- Present direct factual context from memory - no meta-commentary
|
||||
- Write as if providing background context to an AI assistant
|
||||
- Include: facts, decisions, preferences, patterns, timelines
|
||||
- Note any gaps, contradictions, or evolution in thinking
|
||||
- Keep it concise and actionable
|
||||
- DO NOT use phrases like "Previous discussions on", "From conversations", "Past preferences indicate"
|
||||
- DO NOT use conversational language like "you said" or "you mentioned"
|
||||
- Present information as direct factual statements
|
||||
|
||||
FINAL RESPONSE FORMAT:
|
||||
<final_response>
|
||||
[Direct synthesized context - factual statements only]
|
||||
|
||||
Good examples:
|
||||
- "The API redesign focuses on performance and scalability. Key decisions: moving to GraphQL, caching layer with Redis."
|
||||
- "Project Phoenix launches Q2 2024. Main features: real-time sync, offline mode, collaborative editing."
|
||||
- "Sarah leads the backend team. Recent work includes authentication refactor and database migration."
|
||||
|
||||
Bad examples:
|
||||
❌ "Previous discussions on the API revealed..."
|
||||
❌ "From past conversations, it appears that..."
|
||||
❌ "Past preferences indicate..."
|
||||
❌ "The user mentioned that..."
|
||||
|
||||
Just state the facts directly.
|
||||
</final_response>
|
||||
|
||||
${contextHints.length > 0 ? `\nCONTEXT HINTS:\n${contextHints.join("\n")}` : ""}
|
||||
|
||||
CRITICAL REQUIREMENTS:
|
||||
- ALWAYS start with DECOMPOSE step - extract entities, topics, temporal markers, actions
|
||||
- Form specific queries from your decomposition - use user's actual terms
|
||||
- Minimum 3 searches required
|
||||
- Maximum 10 searches allowed - must synthesize after that
|
||||
- STOP and synthesize when you hit stopping criteria (20+ episodes, 5+ searches with results, 7+ searches total)
|
||||
- Each search should target different aspects from decomposition
|
||||
- Present synthesis directly without meta-commentary
|
||||
|
||||
SEARCH QUALITY CHECKLIST:
|
||||
✅ Queries use specific terms from content (names, projects, exact phrases)
|
||||
✅ Searched multiple angles from decomposition (entities, topics, related areas)
|
||||
✅ Stop when you have enough unique context - don't search endlessly
|
||||
✅ Tried alternative terminology if initial searches found nothing
|
||||
❌ Avoid generic/abstract queries that don't match user's vocabulary
|
||||
❌ Don't stop at 3 searches if you found zero unique episodes
|
||||
❌ Don't keep searching when you already found 20+ unique episodes
|
||||
}`
|
||||
}
|
||||
20
apps/webapp/app/trigger/deep-search/types.ts
Normal file
20
apps/webapp/app/trigger/deep-search/types.ts
Normal file
@ -0,0 +1,20 @@
|
||||
export interface DeepSearchPayload {
|
||||
content: string;
|
||||
userId: string;
|
||||
stream: boolean;
|
||||
intentOverride?: string;
|
||||
metadata?: {
|
||||
source?: "chrome" | "obsidian" | "mcp";
|
||||
url?: string;
|
||||
pageTitle?: string;
|
||||
};
|
||||
}
|
||||
|
||||
export interface DeepSearchResponse {
|
||||
synthesis: string;
|
||||
episodes?: Array<{
|
||||
content: string;
|
||||
createdAt: Date;
|
||||
spaceIds: string[];
|
||||
}>;
|
||||
}
|
||||
66
apps/webapp/app/trigger/deep-search/utils.ts
Normal file
66
apps/webapp/app/trigger/deep-search/utils.ts
Normal file
@ -0,0 +1,66 @@
|
||||
import { tool } from "ai";
|
||||
import { z } from "zod";
|
||||
import axios from "axios";
|
||||
import { logger } from "@trigger.dev/sdk/v3";
|
||||
|
||||
export function createSearchMemoryTool(token: string) {
|
||||
return tool({
|
||||
description:
|
||||
"Search the user's memory for relevant facts and episodes. Use this tool multiple times with different queries to gather comprehensive context.",
|
||||
parameters: z.object({
|
||||
query: z
|
||||
.string()
|
||||
.describe(
|
||||
"Search query to find relevant information. Be specific: entity names, topics, concepts."
|
||||
),
|
||||
}),
|
||||
execute: async ({ query }) => {
|
||||
try {
|
||||
const response = await axios.post(
|
||||
`${process.env.API_BASE_URL || "https://core.heysol.ai"}/api/v1/search`,
|
||||
{ query },
|
||||
{
|
||||
headers: {
|
||||
Authorization: `Bearer ${token}`,
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
const searchResult = response.data;
|
||||
|
||||
return {
|
||||
facts: searchResult.facts || [],
|
||||
episodes: searchResult.episodes || [],
|
||||
summary: `Found ${searchResult.episodes?.length || 0} relevant memories`,
|
||||
};
|
||||
} catch (error) {
|
||||
logger.error(`SearchMemory tool error: ${error}`);
|
||||
return {
|
||||
facts: [],
|
||||
episodes: [],
|
||||
summary: "No results found",
|
||||
};
|
||||
}
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
// Helper to extract unique episodes from tool calls
|
||||
export function extractEpisodesFromToolCalls(toolCalls: any[]): any[] {
|
||||
const episodes: any[] = [];
|
||||
|
||||
for (const call of toolCalls || []) {
|
||||
if (call.toolName === "searchMemory" && call.result?.episodes) {
|
||||
episodes.push(...call.result.episodes);
|
||||
}
|
||||
}
|
||||
|
||||
// Deduplicate by content + createdAt
|
||||
const uniqueEpisodes = Array.from(
|
||||
new Map(
|
||||
episodes.map((e) => [`${e.content}-${e.createdAt}`, e])
|
||||
).values()
|
||||
);
|
||||
|
||||
return uniqueEpisodes.slice(0, 10);
|
||||
}
|
||||
@ -3,7 +3,7 @@ import { addToQueue } from "~/lib/ingest.server";
|
||||
import { logger } from "~/services/logger.service";
|
||||
import { SearchService } from "~/services/search.server";
|
||||
import { SpaceService } from "~/services/space.server";
|
||||
import { DeepSearchService } from "~/services/deepSearch.server";
|
||||
import { deepSearch } from "~/trigger/deep-search";
|
||||
import { IntegrationLoader } from "./integration-loader";
|
||||
|
||||
const searchService = new SearchService();
|
||||
@ -580,26 +580,37 @@ async function handleMemoryDeepSearch(args: any) {
|
||||
throw new Error("content is required");
|
||||
}
|
||||
|
||||
const deepSearchService = new DeepSearchService(searchService);
|
||||
|
||||
const result = await deepSearchService.deepSearch(
|
||||
{
|
||||
content,
|
||||
intentOverride,
|
||||
metadata: { source },
|
||||
},
|
||||
// Trigger non-streaming deep search task
|
||||
const handle = await deepSearch.triggerAndWait({
|
||||
content,
|
||||
userId,
|
||||
);
|
||||
stream: false, // MCP doesn't need streaming
|
||||
intentOverride,
|
||||
metadata: { source },
|
||||
});
|
||||
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: "text",
|
||||
text: JSON.stringify(result),
|
||||
},
|
||||
],
|
||||
isError: false,
|
||||
};
|
||||
// Wait for task completion
|
||||
if (handle.ok) {
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: "text",
|
||||
text: JSON.stringify(handle.output),
|
||||
},
|
||||
],
|
||||
isError: false,
|
||||
};
|
||||
} else {
|
||||
return {
|
||||
content: [
|
||||
{
|
||||
type: "text",
|
||||
text: `Error performing deep search: ${handle.error instanceof Error ? handle.error.message : String(handle.error)}`,
|
||||
},
|
||||
],
|
||||
isError: true,
|
||||
};
|
||||
}
|
||||
} catch (error) {
|
||||
logger.error(`MCP deep search error: ${error}`);
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user